ﻻ يوجد ملخص باللغة العربية
We report the discovery of large amounts of cold (T ~ 10^4 K), chemically young gas in an overdensity of galaxies at redshift z ~ 1.6 in the Great Observatories Origins Deep Survey southern field (GOODS-S). The gas is identified thanks to the ultra-strong Mg II absorption features it imprints in the rest-frame UV spectra of galaxies in the background of the overdensity. There is no evidence that the optically-thick gas is part of any massive galaxy (i.e. M_star > 4x10^9 M_sun), but rather is associated with the overdensity; less massive and fainter galaxies (25.5 < z_850 < 27.5 mag) have too large an impact parameter to be causing ultra-strong absorption systems, based on our knowledge of such systems. The lack of corresponding Fe II absorption features, not detected even in co-added spectra, suggests that the gas is chemically more pristine than the ISM and outflows of star-forming galaxies at similar redshift, including those in the overdensity itself, and comparable to the most metal-poor stars in the Milky Way halo. A crude estimate of the projected covering factor of the high-column density gas (N_H >~ 10^20 cm-2) based on the observed fraction of galaxies with ultra-strong absorbers is C_F ~ 0.04. A broad, continuum absorption profile extending to the red of the interstellar Mg II absorption line by <~ 2000 km/s is possibly detected in two independent co-added spectra of galaxies of the overdensity, consistent with a large-scale infall motion of the gas onto the overdensity and its galaxies. Overall, these findings provides the first tentative evidence of accretion of cold, chemically young gas onto galaxies at high redshift, possibly feeding their star formation activity. The fact that the galaxies are members of a large structure, as opposed to field galaxies, might play a significant role in our ability to detect the accreting gas.
We investigate rest-frame near-infrared (NIR) morphologies of a sample of 139 galaxies with M_{s} >= 1 x 10^{10} M_{sun} at z=0.8-1.2 in the GOODS-North field using our deep NIR imaging data (MOIRCS Deep Survey, MODS). We focus on Luminous Infrared G
We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at $1.4<z<1.7$. The high-resolution m
[abridged] We present interferometric CO observations of twelve z~2 submillimetre-faint, star-forming radio galaxies (SFRGs) which are thought to be ultraluminous infrared galaxies (ULIRGs) possibly dominated by warmer dust (T_dust ~> 40 K) than subm
Using the Australia Telescope Compact Array (ATCA), we conducted a survey of CO J=1-0 and J=2-1 line emission towards strongly lensed high-redshift dusty star forming galaxies (DSFGs) previously discovered with the South Pole Telescope (SPT). Our sam
How mass assembly occurs in galaxies and which process(es) contribute to this activity are among the most highly debated questions in galaxy formation theories. This has motivated our survey MASSIV of 0.9<z<1.9 star-forming galaxies selected from the