ترغب بنشر مسار تعليمي؟ اضغط هنا

Complementarity restricts the accuracy with which incompatible quantum observables can be jointly measured. Despite popular conception, the Heisenberg uncertainty relation does not quantify this principle. We report the experimental verification of u niversally valid complementarity relations, including an improved relation derived here. We exploit Einstein-Poldolsky-Rosen correlations between two photonic qubits, to jointly measure incompatible observables of one. The product of our measurement inaccuracies is low enough to violate the widely used, but not universally valid, Arthurs-Kelly relation.
We experimentally demonstrate, using qubits encoded in photon polarization, that if two parties share a single reference direction and use locally orthogonal measurements they will always violate a Bell inequality, up to experimental deficiencies. Th is contrasts with the standard view of Bell inequalities in which the parties need to share a complete reference frame for their measurements. Furthermore, we experimentally demonstrate that as the reference direction degrades the probability of violating a Bell inequality decreases smoothly to (39.7 +/- 0.1) % in the limiting case that the observers do not share a reference direction. This result promises simplified distribution of entanglement between separated parties, with applications in fundamental investigations of quantum physics and tasks such as quantum communication.
We investigate the complexity cost of demonstrating the key types of nonclassical correlations --- Bell inequality violation, EPR-steering, and entanglement --- with independent agents, theoretically and in a photonic experiment. We show that the com plexity cost exhibits a hierarchy among these three tasks, mirroring the recently-discovered hierarchy for how robust they are to noise. For Bell inequality violations, the simplest test is the well-known CHSH test, but for EPR-steering and entanglement the tests that involve the fewest number of detection patterns require non-projective measurements. The simplest EPR-steering requires a choice of projective measurement for one agent and a single non-projective measurement for the other, while the simplest entanglement test uses just a single non-projective measurement for each agent. In both of these cases, we derive our inequalities using the concept of circular 2-designs. This leads to the interesting feature that in our photonic demonstrations, the correlation of interest is independent of the angle between the linear polarizers used by the two parties, which thus require no alignment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا