ترغب بنشر مسار تعليمي؟ اضغط هنا

We present photometry of 4 transits of the exoplanet WASP-4b, each with a precision of approximately 500 ppm and a time sampling of 40-60s. We have used the data to refine the estimates of the system parameters and ephemerides. During two of the tran sits we observed a short-lived, low-amplitude anomaly that we interpret as the occultation of a starspot by the planet. We also find evidence for a pair of similar anomalies in previously published photometry. The recurrence of these anomalies suggests that the stellar rotation axis is nearly aligned with the orbital axis, or else the star spot would not have remained on the transit chord. By analyzing the timings of the anomalies we find the sky-projected stellar obliquity to be -1_{-12}^{+14} degrees. This result is consistent with (and more constraining than) a recent observation of the Rossiter-McLaughlin effect. It suggests that the planet migration mechanism preserved the initially low obliquity, or else that tidal evolution has realigned the system. Future applications of this method using data from the Corot and Kepler missions will allow spin-orbit alignment to be probed for many other exoplanets.
We present photometry of six transits of the exoplanet XO-2b. By combining the light-curve analysis with theoretical isochrones to determine the stellar properties, we find the planetary radius to be 0.996 +0.031/-0.018 rjup and the planetary mass to be 0.565 +/- 0.054 mjup. These results are consistent with those reported previously, and are also consistent with theoretical models for gas giant planets. The mid-transit times are accurate to within 1 min and are consistent with a constant period. However, the period we derive differs by 2.5 sigma from the previously published period. More data are needed to tell whether the period is actually variable (as it would be in the presence of an additional body) or if the timing errors have been underestimated.
We present photometry of the exoplanet host star TrES-3 spanning six occultations (secondary eclipses) of its giant planet. No flux decrements were detected, leading to 99%-confidence upper limits on the planet-to-star flux ratio of 0.00024, 0.0005, and 0.00086 in the i, z, and R bands respectively. The corresponding upper limits on the planets geometric albedo are 0.30, 0.62, and 1.07. The upper limit in the i band rules out the presence of highly reflective clouds, and is only a factor of 2-3 above the predicted level of thermal radiation from the planet.
We present photometry of the G0 star HAT-P-1 during six transits of its close-in giant planet, and we refine the estimates of the system parameters. Relative to Jupiters properties, HAT-P-1b is 1.20 +/- 0.05 times larger and its surface gravity is 2. 7 +/- 0.2 times weaker. Although it remains the case that HAT-P-1b is among the least dense of the known sample of transiting exoplanets, its properties are in accord with previously published models of strongly irradiated, coreless, solar-composition giant planets. The times of the transits have a typical accuracy of 1 min and do not depart significantly from a constant period.
126 - Matthew J. Holman 2007
Of the nearby transiting exoplanets that are amenable to detailed study, TrES-2 is both the most massive and has the largest impact parameter. We present z-band photometry of three transits of TrES-2. We improve upon the estimates of the planetary, s tellar, and orbital parameters, in conjunction with the spectroscopic analysis of the host star by Sozzetti and co-workers. We find the planetary radius to be 1.222 +/- 0.038 R_Jup and the stellar radius to be 1.003 +/- 0.027 R_Sun. The quoted uncertainties include the systematic error due to the uncertainty in the stellar mass (0.980 +/- 0.062 M_Sun). The timings of the transits have an accuracy of 25s and are consistent with a uniform period, thus providing a baseline for future observations with the NASA Kepler satellite, whose field of view will include TrES-2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا