ترغب بنشر مسار تعليمي؟ اضغط هنا

The Transit Light Curve Project. VIII. Six Occultations of the Exoplanet TrES-3

463   0   0.0 ( 0 )
 نشر من قبل Joshua N. Winn
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometry of the exoplanet host star TrES-3 spanning six occultations (secondary eclipses) of its giant planet. No flux decrements were detected, leading to 99%-confidence upper limits on the planet-to-star flux ratio of 0.00024, 0.0005, and 0.00086 in the i, z, and R bands respectively. The corresponding upper limits on the planets geometric albedo are 0.30, 0.62, and 1.07. The upper limit in the i band rules out the presence of highly reflective clouds, and is only a factor of 2-3 above the predicted level of thermal radiation from the planet.



قيم البحث

اقرأ أيضاً

177 - Matthew J. Holman 2007
Of the nearby transiting exoplanets that are amenable to detailed study, TrES-2 is both the most massive and has the largest impact parameter. We present z-band photometry of three transits of TrES-2. We improve upon the estimates of the planetary, s tellar, and orbital parameters, in conjunction with the spectroscopic analysis of the host star by Sozzetti and co-workers. We find the planetary radius to be 1.222 +/- 0.038 R_Jup and the stellar radius to be 1.003 +/- 0.027 R_Sun. The quoted uncertainties include the systematic error due to the uncertainty in the stellar mass (0.980 +/- 0.062 M_Sun). The timings of the transits have an accuracy of 25s and are consistent with a uniform period, thus providing a baseline for future observations with the NASA Kepler satellite, whose field of view will include TrES-2.
119 - Jose M. Fernandez 2009
We present photometry of six transits of the exoplanet XO-2b. By combining the light-curve analysis with theoretical isochrones to determine the stellar properties, we find the planetary radius to be 0.996 +0.031/-0.018 rjup and the planetary mass to be 0.565 +/- 0.054 mjup. These results are consistent with those reported previously, and are also consistent with theoretical models for gas giant planets. The mid-transit times are accurate to within 1 min and are consistent with a constant period. However, the period we derive differs by 2.5 sigma from the previously published period. More data are needed to tell whether the period is actually variable (as it would be in the presence of an additional body) or if the timing errors have been underestimated.
139 - N. P. Gibson 2009
We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte-Carlo analysis was used to determine the planet-star radius ratio and inclination of the system, which were found to be Rp/Rstar=0.1664^{+0.0011}_{-0.0018} and i = 81.73^{+0.13}_{-0.04} respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi^2 = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage, or have clear systematics. A new ephemeris was calculated using the transit times, and was found to be T_c(0) = 2454632.62610 +- 0.00006 HJD and P = 1.3061864 +- 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed for sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming the additional planet is in an initially circular orbit.
We present photometry of the G0 star HAT-P-1 during six transits of its close-in giant planet, and we refine the estimates of the system parameters. Relative to Jupiters properties, HAT-P-1b is 1.20 +/- 0.05 times larger and its surface gravity is 2. 7 +/- 0.2 times weaker. Although it remains the case that HAT-P-1b is among the least dense of the known sample of transiting exoplanets, its properties are in accord with previously published models of strongly irradiated, coreless, solar-composition giant planets. The times of the transits have a typical accuracy of 1 min and do not depart significantly from a constant period.
We present transit photometry of three exoplanets, TrES-4b, HAT-P-3b, and WASP-12b, allowing for refined estimates of the systems parameters. TrES-4b and WASP-12b were confirmed to be bloated planets, with radii of 1.706 +/- 0.056 R_Jup and 1.736 +/- 0.092 R_Jup, respectively. These planets are too large to be explained with standard models of gas giant planets. In contrast, HAT-P-3b has a radius of 0.827 +/- 0.055 R_Jup, smaller than a pure hydrogen-helium planet and indicative of a highly metal-enriched composition. Analyses of the transit timings revealed no significant departures from strict periodicity. For TrES-4, our relatively recent observations allow for improvement in the orbital ephemerides, which is useful for planning future observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا