ﻻ يوجد ملخص باللغة العربية
We present photometry of the G0 star HAT-P-1 during six transits of its close-in giant planet, and we refine the estimates of the system parameters. Relative to Jupiters properties, HAT-P-1b is 1.20 +/- 0.05 times larger and its surface gravity is 2.7 +/- 0.2 times weaker. Although it remains the case that HAT-P-1b is among the least dense of the known sample of transiting exoplanets, its properties are in accord with previously published models of strongly irradiated, coreless, solar-composition giant planets. The times of the transits have a typical accuracy of 1 min and do not depart significantly from a constant period.
We present photometry of the exoplanet host star TrES-3 spanning six occultations (secondary eclipses) of its giant planet. No flux decrements were detected, leading to 99%-confidence upper limits on the planet-to-star flux ratio of 0.00024, 0.0005,
Of the nearby transiting exoplanets that are amenable to detailed study, TrES-2 is both the most massive and has the largest impact parameter. We present z-band photometry of three transits of TrES-2. We improve upon the estimates of the planetary, s
We present photometry of six transits of the exoplanet XO-2b. By combining the light-curve analysis with theoretical isochrones to determine the stellar properties, we find the planetary radius to be 0.996 +0.031/-0.018 rjup and the planetary mass to
We present new spectroscopic and photometric observations of the HAT-P-1 planetary system. Spectra obtained during three transits exhibit the Rossiter-McLaughlin effect, allowing us to measure the angle between the sky projections of the stellar spin
We present transit photometry of three exoplanets, TrES-4b, HAT-P-3b, and WASP-12b, allowing for refined estimates of the systems parameters. TrES-4b and WASP-12b were confirmed to be bloated planets, with radii of 1.706 +/- 0.056 R_Jup and 1.736 +/-