ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that a Weyl superconductor can absorb light via a novel surface-to-bulk mechanism, which we dub the topological anomalous skin effect. This occurs even in the absence of disorder for a single-band superconductor, and is facilitated by the top ological splitting of the Hilbert space into bulk and chiral surface Majorana states. In the clean limit, the effect manifests as a characteristic absorption peak due to surface-bulk transitions. We also consider the effects of bulk disorder, using the Keldysh response theory. For weak disorder, the bulk response is reminiscent of the Mattis-Bardeen result for $s$-wave superconductors, with strongly suppressed spectral weight below twice the pairing energy, despite the presence of gapless Weyl points. For stronger disorder, the bulk response becomes more Drude-like and the $p$-wave features disappear. We show that the surface-bulk signal survives when combined with the bulk in the presence of weak disorder. The topological anomalous skin effect can therefore serve as a fingerprint for Weyl superconductivity. We also compute the Meissner response in the slab geometry, incorporating the effect of the surface states.
We study quantum quenches of helical liquids with spin-flip inelastic scattering. Counterpropagating charge packets in helical edges can be created by an ultrashort electric pulse applied across a 2D topological insulator. Localized hot spots that fo rm due to scattering enable two types of strongly nonlinear wave dynamics. First, propagating packets develop self-focusing shock fronts. Second, colliding packets with opposite charge can exhibit near-perfect retroreflection, despite strong dissipation. This leads to frequency doubling that could be detected experimentally from emitted terahertz radiation.
As a potential window on transitions out of the ergodic, many-body-delocalized phase, we study the dephasing of weakly disordered, quasi-one-dimensional fermion systems due to a diffusive, non-Markovian noise bath. Such a bath is self-generated by th e fermions, via inelastic scattering mediated by short-ranged interactions. We calculate the dephasing of weak localization perturbatively through second order in the bath coupling. However, the expansion breaks down at long times, and is not stabilized by including a mean-field decay rate, signaling a failure of the self-consistent Born approximation. We also consider a many-channel quantum wire where short-ranged, spin-exchange interactions coexist with screened Coulomb interactions. We calculate the dephasing rate, treating the short-ranged interactions perturbatively and the Coulomb interaction exactly. The latter provides a physical infrared regularization that stabilizes perturbation theory at long times, giving the first controlled calculation of quasi-1D dephasing due to diffusive noise. At first order in the diffusive bath coupling, we find an enhancement of the dephasing rate, but at second order we find a rephasing contribution. Our results differ qualitatively from those obtained via self-consistent calculations and are relevant in two different contexts. First, in the search for precursors to many-body localization in the ergodic phase. Second, our results provide a mechanism for the enhancement of dephasing at low temperatures in spin SU(2)-symmetric quantum wires, beyond the Altshuler-Aronov-Khmelnitsky result. The enhancement is possible due to the amplification of the triplet-channel interaction strength, and provides an additional mechanism that could contribute to the experimentally observed low-temperature saturation of the dephasing time.
We present numerical evidence that most two-dimensional surface states of a bulk topological superconductor (TSC) sit at an integer quantum Hall plateau transition. We study TSC surface states in class CI with quenched disorder. Low-energy (finite-en ergy) surface states were expected to be critically delocalized (Anderson localized). We confirm the low-energy picture, but find instead that finite-energy states are also delocalized, with universal statistics that are independent of the TSC winding number, and consistent with the spin quantum Hall plateau transition (percolation).
In two dimensions (2D), dephasing by a bath cuts off Anderson localization that would otherwise occur at any energy density for fermions with disorder. For an isolated system with short-range interactions, the system can be its own bath, exhibiting d iffusive (non-Markovian) thermal density fluctuations. We recast the dephasing of weak localization due to a diffusive bath as a self-interacting polymer loop. We investigate the critical behavior of the loop in $d=4-epsilon$ dimensions, and find a nontrivial fixed point corresponding to a temperature $T^* sim epsilon >0$ where the dephasing time diverges. Assuming that this fixed point survives to $epsilon=2$, we associate it to a possible instability of the ergodic phase. Our approach may open a new line of attack against the problem of the ergodic to many-body-localized phase transition in $d > 1$ spatial dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا