ﻻ يوجد ملخص باللغة العربية
We present numerical evidence that most two-dimensional surface states of a bulk topological superconductor (TSC) sit at an integer quantum Hall plateau transition. We study TSC surface states in class CI with quenched disorder. Low-energy (finite-energy) surface states were expected to be critically delocalized (Anderson localized). We confirm the low-energy picture, but find instead that finite-energy states are also delocalized, with universal statistics that are independent of the TSC winding number, and consistent with the spin quantum Hall plateau transition (percolation).
The effect of surface disorder on electronic systems is particularly interesting for topological phases with surface and edge states. Using exact diagonalization, it has been demonstrated that the surface states of a 3D topological insulator survive
We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and ti
The charge transport mechanism in amorphous oxide semiconductors (AOS) is a matter of controversial debates. Most theoretical studies so far neglected the percolation nature of the phenomenon. In this article, a recipe for theoretical description of
The tunneling junction between one-dimensional topological superconductor and integer (fractional) topological insulator (TI), realized via point contact, is investigated theoretically with bosonization technology and renormalization group methods. F
We study models of correlated percolation where there are constraints on the occupation of sites that mimic force-balance, i.e. for a site to be stable requires occupied neighboring sites in all four compass directions in two dimensions. We prove rig