ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivated by recent experiments indicating strong superconductivity and intricate correlated insulating and flavor-polarized physics in mirror-symmetric twisted trilayer graphene, we study the effects of interactions in this system close to the magic angle, using a combination of analytical and numerical methods. We identify asymptotically exact correlated many-body ground states at all integer filling fractions $ u$ of the flat bands. To determine their fate when moving away from these fine-tuned points, we apply self-consistent Hartree-Fock numerics and analytic perturbation theory, with good agreement between the two approaches. This allows us to construct a phase diagram for the system as a function of $ u$ and the displacement field, the crucial experimental tuning parameter of the system, and study the spectra of the different phases. The phase diagram is dominated by a correlated semimetallic intervalley coherent state and an insulating sublattice-polarized phase around charge neutrality, $ u=0$, with additional spin-polarization being present at quarter ($ u=-2$) or three quarter ($ u=+2$) fillings of the quasi-flat bands. We further study the superconducting instabilities emerging from these correlated states, both in the absence and in the additional presence of electron-phonon coupling, also taking into account possible Wess-Zumino-Witten terms. In the experimentally relevant regime, we find triplet pairing to dominate, possibly explaining the observed violation of the Pauli limit. Our results have several consequences for experiments as well as future theoretical work and illustrate the rich physics resulting from the interplay of almost flat bands and dispersive Dirac cones in twisted trilayer graphene.
Graphene-based moir{e} systems have attracted considerable interest in recent years as they display a remarkable variety of correlated phenomena. Besides insulating and superconducting phases in the vicinity of integer fillings of the moir{e} unit ce ll, there is growing evidence for electronic nematic order both in twisted bilayer graphene and twisted double-bilayer graphene (tDBG), as signaled by the spontaneous breaking of the threefold rotational symmetry of the moir{e} superlattices. Here, we combine symmetry-based analysis with a microscopic continuum model to investigate the structure of the nematic phase of tDBG and its experimental manifestations. First, we perform a detailed comparison between the theoretically calculated local density of states and recent scanning tunneling microscopy data [arXiv:2009.11645] to resolve the internal structure of the nematic order parameter in terms of the layer, sublattice, spin, and valley degrees of freedom. We find strong evidence that the dominant contribution to the nematic order parameter comes from states at the moir{e} scale rather than at the microscopic scale of the individual graphene layers, which demonstrates the key role played by the moire degrees of freedom and confirms the correlated nature of the nematic phase in tDBG. Secondly, our analysis reveals an unprecedented tunability of the orientation of the nematic director in tDBG by an externally applied electric field, allowing the director to rotate away from high-symmetry crystalline directions. We compute the expected fingerprints of this rotation in both STM and transport experiments, providing feasible ways to probe it. Rooted in the strong sensitivity of the flat bands of tDBG to the displacement field, this effect opens an interesting route to the electrostatic control of electronic nematicity in moir{e} systems.
We present a deep machine learning algorithm to extract crystal field (CF) Stevens parameters from thermodynamic data of rare-earth magnetic materials. The algorithm employs a two-dimensional convolutional neural network (CNN) that is trained on magn etization, magnetic susceptibility and specific heat data that is calculated theoretically within the single-ion approximation and further processed using a standard wavelet transformation. We apply the method to crystal fields of cubic, hexagonal and tetragonal symmetry and for both integer and half-integer total angular momentum values $J$ of the ground state multiplet. We evaluate its performance on both theoretically generated synthetic and previously published experimental data on CeAgSb$_2$, PrAgSb$_2$ and PrMg$_2$Cu$_9$, and find that it can reliably and accurately extract the CF parameters for all site symmetries and values of $J$ considered. This demonstrates that CNNs provide an unbiased approach to extracting CF parameters that avoids tedious multi-parameter fitting procedures.
Recent experiments on twisted bilayer graphene have shown a high-temperature parent state with massless Dirac fermions and broken electronic flavor symmetry; superconductivity and correlated insulators emerge from this parent state at lower temperatu res. We propose that the superconducting and correlated insulating orders are connected by Wess-Zumino-Witten terms, so that defects of one order contain quanta of another order and skyrmion fluctuations of the correlated insulator are a mechanism for superconductivity. We present a comprehensive listing of plausible low-temperature orders, and the parent flavor symmetry breaking orders. The previously characterized topological nature of the band structure of twisted bilayer graphene plays an important role in this analysis.
We consider 2+1 dimensional conformal gauge theories coupled to additional degrees of freedom which induce a spatially local but long-range in time $1/(tau-tau)^2$ interaction between gauge-neutral local operators. Such theories have been argued to d escribe the hole-doped cuprates near optimal doping. We focus on a SU(2) gauge theory with $N_h$ flavors of adjoint Higgs fields undergoing a quantum transition between Higgs and confining phases: the $1/(tau-tau)^2$ interaction arises from a spectator large Fermi surface of electrons. The large $N_h$ expansion leads to an effective action containing fields which are bilocal in time but local in space. We find a strongly-coupled fixed point at order $1/N_h$, with dynamic critical exponent $z > 1$. We show that the entropy preserves hyperscaling, but nevertheless leads to a linear in temperature specific heat with a co-efficient which has a finite enhancement near the quantum critical point.
In the study of $mathcal{P}mathcal{T}$-symmetric quantum systems with non-Hermitian perturbations, one of the most important questions is whether eigenvalues stay real or whether $mathcal{P}mathcal{T}$-symmetry is spontaneously broken when eigenvalue s meet. A particularly interesting set of eigenstates is provided by the degenerate ground-state subspace of systems with topological order. In this paper, we present simple criteria that guarantee the protection of $mathcal{P}mathcal{T}$-symmetry and, thus, the reality of the eigenvalues in topological many-body systems. We formulate these criteria in both geometric and algebraic form, and demonstrate them using the toric code and several different fracton models as examples. Our analysis reveals that $mathcal{P}mathcal{T}$-symmetry is robust against a remarkably large class of non-Hermitian perturbations in these models; this is particularly striking in the case of fracton models due to the exponentially large number of degenerate states.
We consider the thermal Hall effect of fermionic matter coupled to emergent gauge fields in 2+1 dimensions. While the low-temperature thermal Hall conductivity of bulk topological phases can be connected to chiral edge states and a gravitational anom aly, there is no such interpretation at nonzero temperatures above 2+1 dimensional quantum critical points. In the limit of a large number of matter flavors, the leading contribution to the thermal Hall conductivity is that from the fermionic matter. The next-to-leading contribution is from the gauge fluctuations, and this has a sign which is opposite to that of the matter contribution. We illustrate this by computations on a Dirac Chern-Simons theory of the quantum phase transition in a square-lattice antiferromagnet involving the onset of semion topological order. We find similar results for a model of the pseudogap metal with Fermi pockets coupled to an emergent U(1) gauge field. We note connections to recent observations on the hole-doped cuprates: our theory captures the main trends, but the overall magnitude of the effect is smaller than that observed.
The study of topological bandstructures is an active area of research in condensed matter physics and beyond. Here, we combine recent progress in this field with developments in machine-learning, another rising topic of interest. Specifically, we int roduce an unsupervised machine-learning approach that searches for and retrieves paths of adiabatic deformations between Hamiltonians, thereby clustering them according to their topological properties. The algorithm is general as it does not rely on a specific parameterization of the Hamiltonian and is readily applicable to any symmetry class. We demonstrate the approach using several different models in both one and two spatial dimensions and for different symmetry classes with and without crystalline symmetries. Accordingly, it is also shown how trivial and topological phases can be diagnosed upon comparing with a generally designated set of trivial atomic insulators.
The Mott insulating phase of the parent compounds is frequently taken as starting point for the underdoped high-$T_c$ cuprate superconductors. In particular, the pseudogap state is often considered as deriving from the Mott insulator. In this work, w e systematically investigate different weakly-doped Mott insulators on the square and triangular lattice to clarify the relationship between the pseudogap and Mottness. We show that doping a two-dimensional Mott insulator does not necessarily lead to a pseudogap phase. Despite its inherent strong-coupling nature, we find that the existence or absence of a pseudogap depends sensitively on non-interacting band parameters and identify the crucial role played by the van Hove singularities of the system. Motivated by a SU(2) gauge theory for the pseudogap state, we propose and verify numerically a simple equation that governs the evolution of characteristic features in the electronic scattering rate.
We present a systematic classification and analysis of possible pairing instabilities in graphene-based moire superlattices. Motivated by recent experiments on twisted double-bilayer graphene showing signs of triplet superconductivity, we analyze bot h singlet and triplet pairing separately, and describe how these two channels behave close to the limit where the system is invariant under separate spin rotations in the two valleys, realizing an SU(2)$_+$ $times$ SU(2)$_-$ symmetry. Further, we discuss the conditions under which singlet and triplet can mix via two nearly degenerate transitions, and how the different pairing states behave when an external magnetic field is applied. The consequences of the additional microscopic or emergent approximate symmetries relevant for superconductivity in twisted bilayer graphene and ABC trilayer graphene on hexagonal boron nitride are described in detail. We also analyze which of the pairing states can arise in mean-field theory and study the impact of corrections coming from ferromagnetic fluctuations. For instance, we show that, close to the parameters of mean-field theory, a nematic mixed singlet-triplet state emerges. Our study illustrates that graphene superlattices provide a rich platform for exotic superconducting states, and allow for the admixture of singlet and triplet pairing even in the absence of spin-orbit coupling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا