ترغب بنشر مسار تعليمي؟ اضغط هنا

Protection of parity-time symmetry in topological many-body systems: non-Hermitian toric code and fracton models

28   0   0.0 ( 0 )
 نشر من قبل Henry Shackleton
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the study of $mathcal{P}mathcal{T}$-symmetric quantum systems with non-Hermitian perturbations, one of the most important questions is whether eigenvalues stay real or whether $mathcal{P}mathcal{T}$-symmetry is spontaneously broken when eigenvalues meet. A particularly interesting set of eigenstates is provided by the degenerate ground-state subspace of systems with topological order. In this paper, we present simple criteria that guarantee the protection of $mathcal{P}mathcal{T}$-symmetry and, thus, the reality of the eigenvalues in topological many-body systems. We formulate these criteria in both geometric and algebraic form, and demonstrate them using the toric code and several different fracton models as examples. Our analysis reveals that $mathcal{P}mathcal{T}$-symmetry is robust against a remarkably large class of non-Hermitian perturbations in these models; this is particularly striking in the case of fracton models due to the exponentially large number of degenerate states.

قيم البحث

اقرأ أيضاً

207 - Gaoyong Sun , Su-Peng Kou 2020
We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is inve stigated by the second derivative of ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibility.
44 - Zijian Wang , Qiaoyi Li , Wei Li 2021
Symmetry-protected topological edge modes are one of the most remarkable phenomena in topological physics. Here, we formulate and quantitatively examine the effect of a quantum bath on these topological edge modes. Using the density matrix renormaliz ation group method, we study the ground state of a composite system of spin-1 quantum chain, where the system and the bath degrees of freedom are treated on the same footing. We focus on the dependence of these edge modes on the global/partial symmetries of system-bath coupling and on the features of the quantum bath. It is shown that the time-reversal symmetry(TRS) plays a special role for an open quantum system, where an emergent partial TRS breaking will result in a TRS-protected topological mode diffusing from the system edge into the bath, thus make it useless for quantum computation.
For ordinary hermitian Hamiltonians, the states show the Kramers degeneracy when the system has a half-odd-integer spin and the time reversal operator obeys Theta^2=-1, but no such a degeneracy exists when Theta^2=+1. Here we point out that for non-h ermitian systems, there exists a degeneracy similar to Kramers even when Theta^2=+1. It is found that the new degeneracy follows from the mathematical structure of split-quaternion, instead of quaternion from which the Kramers degeneracy follows in the usual hermitian cases. Furthermore, we also show that particle/hole symmetry gives rise to a pair of states with opposite energies on the basis of the split quaternion in a class of non-hermitian Hamiltonians. As concrete examples, we examine in detail NxN Hamiltonians with N=2 and 4 which are non-hermitian generalizations of spin 1/2 Hamiltonian and quadrupole Hamiltonian of spin 3/2, respectively.
A gapped many-body system is described by path integral on a space-time lattice $C^{d+1}$, which gives rise to a partition function $Z(C^{d+1})$ if $partial C^{d+1} =emptyset$, and gives rise to a vector $|Psirangle$ on the boundary of space-time if $partial C^{d+1} eqemptyset$. We show that $V = text{log} sqrt{langlePsi|Psirangle}$ satisfies the inclusion-exclusion property $frac{V(Acup B)+V(Acap B)}{V(A)+V(B)}=1$ and behaves like a volume of the space-time lattice $C^{d+1}$ in large lattice limit (i.e. thermodynamics limit). This leads to a proposal that the vector $|Psirangle$ is the quantum-volume of the space-time lattice $C^{d+1}$. The inclusion-exclusion property does not apply to quantum-volume since it is a vector. But quantum-volume satisfies a quantum additive property. The violation of the inclusion-exclusion property by $V = text{log} sqrt{langlePsi|Psirangle}$ in the subleading term of thermodynamics limit gives rise to topological invariants that characterize the topological order in the system. This is a systematic way to construct and compute topological invariants from a generic path integral. For example, we show how to use non-universal partition functions $Z(C^{2+1})$ on several related space-time lattices $C^{2+1}$ to extract $(M_f)_{11}$ and $text{Tr}(M_f)$, where $M_f$ is a representation of the modular group $SL(2,mathbb{Z})$ -- a topological invariant that almost fully characterizes the 2+1D topological orders.
78 - Timo Hyart , Jose L. Lado 2021
Quantum dots are one of the paradigmatic solid-state systems for quantum engineering, providing an outstanding tunability to explore fundamental quantum phenomena. Here we show that non-Hermitian many-body topological modes can be realized in a quant um dot chain by utilizing a gate-tunable modulation of dissipation, and they emerge purely because of the non-Hermiticity. By exactly solving the non-Hermitian interacting description both with exact diagonalization and tensor-networks, we demonstrate that these topological modes are robust even in the presence strong interactions, leading to a strongly correlated topological many-particle state. Our results put forward quantum dot arrays as a platform for engineering non-Hermitian many-body topological modes, and highlight the resilience of non-Hermitian topology to electronic interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا