ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, based on a successively accuracy-increasing approximation of the $ell_0$ norm, we propose a new algorithm for recovery of sparse vectors from underdetermined measurements. The approximations are realized with a certain class of concave functions that aggressively induce sparsity and their closeness to the $ell_0$ norm can be controlled. We prove that the series of the approximations asymptotically coincides with the $ell_1$ and $ell_0$ norms when the approximation accuracy changes from the worst fitting to the best fitting. When measurements are noise-free, an optimization scheme is proposed which leads to a number of weighted $ell_1$ minimization programs, whereas, in the presence of noise, we propose two iterative thresholding methods that are computationally appealing. A convergence guarantee for the iterative thresholding method is provided, and, for a particular function in the class of the approximating functions, we derive the closed-form thresholding operator. We further present some theoretical analyses via the restricted isometry, null space, and spherical section properties. Our extensive numerical simulations indicate that the proposed algorithm closely follows the performance of the oracle estimator for a range of sparsity levels wider than those of the state-of-the-art algorithms.
In this paper, we propose a new algorithm for recovery of low-rank matrices from compressed linear measurements. The underlying idea of this algorithm is to closely approximate the rank function with a smooth function of singular values, and then min imize the resulting approximation subject to the linear constraints. The accuracy of the approximation is controlled via a scaling parameter $delta$, where a smaller $delta$ corresponds to a more accurate fitting. The consequent optimization problem for any finite $delta$ is nonconvex. Therefore, in order to decrease the risk of ending up in local minima, a series of optimizations is performed, starting with optimizing a rough approximation (a large $delta$) and followed by successively optimizing finer approximations of the rank with smaller $delta$s. To solve the optimization problem for any $delta > 0$, it is converted to a new program in which the cost is a function of two auxiliary positive semidefinete variables. The paper shows that this new program is concave and applies a majorize-minimize technique to solve it which, in turn, leads to a few convex optimization iterations. This optimization scheme is also equivalent to a reweighted Nuclear Norm Minimization (NNM), where weighting update depends on the used approximating function. For any $delta > 0$, we derive a necessary and sufficient condition for the exact recovery which are weaker than those corresponding to NNM. On the numerical side, the proposed algorithm is compared to NNM and a reweighted NNM in solving affine rank minimization and matrix completion problems showing its considerable and consistent superiority in terms of success rate, especially, when the number of measurements decreases toward the lower-bound for the unique representation.
In this paper, the problem of matrix rank minimization under affine constraints is addressed. The state-of-the-art algorithms can recover matrices with a rank much less than what is sufficient for the uniqueness of the solution of this optimization p roblem. We propose an algorithm based on a smooth approximation of the rank function, which practically improves recovery limits on the rank of the solution. This approximation leads to a non-convex program; thus, to avoid getting trapped in local solutions, we use the following scheme. Initially, a rough approximation of the rank function subject to the affine constraints is optimized. As the algorithm proceeds, finer approximations of the rank are optimized and the solver is initialized with the solution of the previous approximation until reaching the desired accuracy. On the theoretical side, benefiting from the spherical section property, we will show that the sequence of the solutions of the approximating function converges to the minimum rank solution. On the experimental side, it will be shown that the proposed algorithm, termed SRF standing for Smoothed Rank Function, can recover matrices which are unique solutions of the rank minimization problem and yet not recoverable by nuclear norm minimization. Furthermore, it will be demonstrated that, in completing partially observed matrices, the accuracy of SRF is considerably and consistently better than some famous algorithms when the number of revealed entries is close to the minimum number of parameters that uniquely represent a low-rank matrix.
Let A be an n by m matrix with m>n, and suppose that the underdetermined linear system As=x admits a sparse solution s0 for which ||s0||_0 < 1/2 spark(A). Such a sparse solution is unique due to a well-known uniqueness theorem. Suppose now that we ha ve somehow a solution s_hat as an estimation of s0, and suppose that s_hat is only `approximately sparse, that is, many of its components are very small and nearly zero, but not mathematically equal to zero. Is such a solution necessarily close to the true sparsest solution? More generally, is it possible to construct an upper bound on the estimation error ||s_hat-s0||_2 without knowing s0? The answer is positive, and in this paper we construct such a bound based on minimal singular values of submatrices of A. We will also state a tight bound, which is more complicated, but besides being tight, enables us to study the case of random dictionaries and obtain probabilistic upper bounds. We will also study the noisy case, that is, where x=As+n. Moreover, we will see that where ||s0||_0 grows, to obtain a predetermined guaranty on the maximum of ||s_hat-s0||_2, s_hat is needed to be sparse with a better approximation. This can be seen as an explanation to the fact that the estimation quality of sparse recovery algorithms degrades where ||s0||_0 grows.
Finding sparse solutions of underdetermined systems of linear equations is a fundamental problem in signal processing and statistics which has become a subject of interest in recent years. In general, these systems have infinitely many solutions. How ever, it may be shown that sufficiently sparse solutions may be identified uniquely. In other words, the corresponding linear transformation will be invertible if we restrict its domain to sufficiently sparse vectors. This property may be used, for example, to solve the underdetermined Blind Source Separation (BSS) problem, or to find sparse representation of a signal in an `overcomplete dictionary of primitive elements (i.e., the so-called atomic decomposition). The main drawback of current methods of finding sparse solutions is their computational complexity. In this paper, we will show that by detecting `active components of the (potential) solution, i.e., those components having a considerable value, a framework for fast solution of the problem may be devised. The idea leads to a family of algorithms, called `Iterative Detection-Estimation (IDE), which converge to the solution by successive detection and estimation of its active part. Comparing the performance of IDE(s) with one of the most successful method to date, which is based on Linear Programming (LP), an improvement in speed of about two to three orders of magnitude is observed.
In this paper, we propose a Bayesian Hypothesis Testing Algorithm (BHTA) for sparse representation. It uses the Bayesian framework to determine active atoms in sparse representation of a signal. The Bayesian hypothesis testing based on three assump tions, determines the active atoms from the correlations and leads to the activity measure as proposed in Iterative Detection Estimation (IDE) algorithm. In fact, IDE uses an arbitrary decreasing sequence of thresholds while the proposed algorithm is based on a sequence which derived from hypothesis testing. So, Bayesian hypothesis testing framework leads to an improved version of the IDE algorithm. The simulations show that Hard-version of our suggested algorithm achieves one of the best results in terms of estimation accuracy among the algorithms which have been implemented in our simulations, while it has the greatest complexity in terms of simulation time.
Let x be a signal to be sparsely decomposed over a redundant dictionary A, i.e., a sparse coefficient vector s has to be found such that x=As. It is known that this problem is inherently unstable against noise, and to overcome this instability, the a uthors of [Stable Recovery; Donoho et.al., 2006] have proposed to use an approximate decomposition, that is, a decomposition satisfying ||x - A s|| < delta, rather than satisfying the exact equality x = As. Then, they have shown that if there is a decomposition with ||s||_0 < (1+M^{-1})/2, where M denotes the coherence of the dictionary, this decomposition would be stable against noise. On the other hand, it is known that a sparse decomposition with ||s||_0 < spark(A)/2 is unique. In other words, although a decomposition with ||s||_0 < spark(A)/2 is unique, its stability against noise has been proved only for highly more restrictive decompositions satisfying ||s||_0 < (1+M^{-1})/2, because usually (1+M^{-1})/2 << spark(A)/2. This limitation maybe had not been very important before, because ||s||_0 < (1+M^{-1})/2 is also the bound which guaranties that the sparse decomposition can be found via minimizing the L1 norm, a classic approach for sparse decomposition. However, with the availability of new algorithms for sparse decomposition, namely SL0 and Robust-SL0, it would be important to know whether or not unique sparse decompositions with (1+M^{-1})/2 < ||s||_0 < spark(A)/2 are stable. In this paper, we show that such decompositions are indeed stable. In other words, we extend the stability bound from ||s||_0 < (1+M^{-1})/2 to the whole uniqueness range ||s||_0 < spark(A)/2. In summary, we show that all unique sparse decompositions are stably recoverable. Moreover, we see that sparser decompositions are more stable.
Recently, great attention was intended toward overcomplete dictionaries and the sparse representations they can provide. In a wide variety of signal processing problems, sparsity serves a crucial property leading to high performance. Inpainting, the process of reconstructing lost or deteriorated parts of images or videos, is an interesting application which can be handled by suitably decomposition of an image through combination of overcomplete dictionaries. This paper addresses a novel technique of such a decomposition and investigate that through inpainting of images. Simulations are presented to demonstrate the validation of our approach.
In this paper, we propose a method to address the problem of source estimation for Sparse Component Analysis (SCA) in the presence of additive noise. Our method is a generalization of a recently proposed method (SL0), which has the advantage of direc tly minimizing the L0-norm instead of L1-norm, while being very fast. SL0 is based on minimization of the smoothed L0-norm subject to As=x. In order to better estimate the source vector for noisy mixtures, we suggest then to remove the constraint As=x, by relaxing exact equality to an approximation (we call our method Smoothed L0-norm Denoising or SL0DN). The final result can then be obtained by minimization of a proper linear combination of the smoothed L0-norm and a cost function for the approximation. Experimental results emphasize on the significant enhancement of the modified method in noisy cases.
In this paper an extension of the sparse decomposition problem is considered and an algorithm for solving it is presented. In this extension, it is known that one of the shift
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا