ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a muon spin rotation/relaxation ($mu$SR) study of single-crystalline samples of the $alpha$-RuCl$_3$ honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibili ty and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures $T_{rm N}$ with decreasing temperature, eventually falling into the $T_{rm N}=7$ K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via $mu$SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different $T_{rm N}$s. We also perform $mu$SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zig-zag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.
We report on the electronic ground state of a layered perovskite vanadium oxide Sr$_2$VO$_4$ studied by the combined use of synchrotron radiation x-ray diffraction (SR-XRD) and muon spin rotation/relaxation ($mu$SR) techniques, where $mu$SR measureme nts were extended down to 30 mK. We found an intermediate orthorhombic phase between $T_{rm c2} sim$~130 K and $T_{rm c1} sim$~100 K, whereas a tetragonal phase appears for $T > T_{rm c2}$ and $T < T_{rm c1}$. The absence of long-range magnetic order was confirmed by $mu$SR at the reentrant tetragonal phase below $T_{rm c1}$, where the relative enhancement in the $c$-axis length versus that of the $a$-axis length was observed. However, no clear indication of the lowering of the tetragonal lattice symmetry with superlattice modulation, which is expected in the orbital order state with superstructure of $d_{yz}$ and $d_{zx}$ orbitals, was observed by SR-XRD below $T_{rm c1}$. Instead, it was inferred from $mu$SR that a magnetic state developed below $T_{rm c0} sim$~10 K, which was characterized by the highly inhomogeneous and fluctuating local magnetic fields down to 30 mK. We argue that the anomalous magnetic ground state below $T_{rm c0}$ originates from the coexistence of ferromagnetic and antiferromagnetic correlations.
High-temperature (high-$T_{rm c}$) superconductivity appears as a consequence of the carrier-doping of an undoped parent compound exhibiting antiferromagnetic order; thereby, ground-state properties of the parent compound are closely relevant to the superconducting state. On the basis of the concept, a spin-fluctuation has been addressed as an origin of pairing of the superconducting electrons in cuprates. Whereas, there is growing interest in the pairing mechanism such as an unconventional spin-fluctuation or an advanced orbital-fluctuation due to the characteristic multi-orbital system in iron-pnictides. Here, we report the discovery of an antiferromagnetic order as well as a unique structural transition in electron-overdoped LaFeAsO$_{1-x}$H$_x$ ($x$ ~ 0.5), whereby another parent phase was uncovered, albeit heavily doped. The unprecedented two-dome superconducting phases observed in this material can be interpreted as a consequence of the carrier-doping starting from the original at $xsim0$ and advanced at $xsim0.5$ parent phases toward the intermediate region. The bipartite parent phases with distinct physical properties in the second magnetic phase provide us with an interesting example to illustrate the intimate interplay among the magnetic interaction, structural change and orbital degree of freedom in iron-pnictides.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا