ترغب بنشر مسار تعليمي؟ اضغط هنا

Local spin structure of the $alpha$-RuCl$_3$ honeycomb-lattice magnet observed via muon spin rotation/relaxation

76   0   0.0 ( 0 )
 نشر من قبل Ichihiro Yamauchi Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a muon spin rotation/relaxation ($mu$SR) study of single-crystalline samples of the $alpha$-RuCl$_3$ honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures $T_{rm N}$ with decreasing temperature, eventually falling into the $T_{rm N}=7$ K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via $mu$SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different $T_{rm N}$s. We also perform $mu$SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zig-zag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.



قيم البحث

اقرأ أيضاً

Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4$d$ system $alpha$-RuCl$_3$ has recently come into view as a candidate Kitaev system, with evide nce for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru $d$ states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that $alpha$-RuCl$_3$ is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material $alpha$-RuCl$_3$, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magn etic field applied in the $ab$ plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in $alpha$-RuCl$_3$. The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.
We report on the unusual behavior of the in-plane thermal conductivity ($kappa$) and torque ($tau$) response in the Kitaev-Heisenberg material $alpha$-RuCl$_3$. $kappa$ shows a striking enhancement with linear growth beyond H = 7 T, where magnetic or der disappears, while $tau$ for both of the in-plane symmetry directions shows an anomaly at the same field. The temperature- and field-dependence of $kappa$ are far more complex than conventional phonon and magnon contributions, and require us to invoke the presence of unconventional spin excitations whose properties are characteristic of a field-induced spin-liquid phase related to the enigmatic physics of the Kitaev model in an applied magnetic field
In the class of materials called spin liquids, a magnetically ordered state cannot be attained even at milliKelvin temperatures because of conflicting constraints on each spin (for e.g. from geometric or exchange frustration). The resulting quantum s pin-liquid (QSL) state is currently of intense interest because it exhibits novel excitations as well as wave-function entanglement. The layered insulator $alpha$-RuCl$_3$ orders as a zigzag antiferromagnet below $sim$7 K in zero magnetic field. The zigzag order is destroyed when a magnetic field $bf H$ is applied parallel to the zigzag axis a. Within the field interval (7.3, 11) Tesla, there is growing evidence that a QSL state exists. Here we report the observation of oscillations in its thermal conductivity below 4 K. The oscillation amplitude is very large within the interval (7.3, 11) T and strongly suppressed on either side. Paradoxically, the oscillations are periodic in 1/emph{H}, analogous to quantum oscillations in metals, even though $alpha$-RuCl$_3$ is an excellent insulator with a gap of 1.9 eV. By tilting $bf H$ out of the plane, we find that the oscillation period is determined by the in-plane component $H_a$. As the temperature is raised above 0.5 K, the oscillation amplitude decreases exponentially. The decrease anticorrelates with the emergence above $sim$2 K of an anomalous planar thermal Hall conductivity measured with $bf Hparallel a$. To exclude extrinsic artifacts, we carried out several tests. The implications of the oscillations are discussed.
The pure Kitaev honeycomb model harbors a quantum spin liquid in zero magnetic fields, while applying finite magnetic fields induces a topological spin liquid with non-Abelian anyonic excitations. This latter phase has been much sought after in Kitae v candidate materials, such as $alpha$-RuCl$_3$. Currently, two competing scenarios exist for the intermediate field phase of this compound ($B=7-10$ T), based on experimental as well as theoretical results: (i) conventional multiparticle magnetic excitations of integer quantum number vs. (ii) Majorana fermionic excitations of possibly non-Abelian nature with a fractional quantum number. To discriminate between these scenarios a detailed investigation of excitations over a wide field-temperature phase diagram is essential. Here we present Raman spectroscopic data revealing low-energy quasiparticles emerging out of a continuum of fractionalized excitations at intermediate fields, which are contrasted by conventional spin-wave excitations. The temperature evolution of these quasiparticles suggests the formation of bound states out of fractionalized excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا