ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalizations of the AGT correspondence between 4D $mathcal{N}=2$ $SU(2)$ supersymmetric gauge theory on ${mathbb {C}}^2$ with $Omega$-deformation and 2D Liouville conformal field theory include a correspondence between 4D $mathcal{N}=2$ $SU(N)$ su persymmetric gauge theories, $N = 2, 3, ldots$, on ${mathbb {C}}^2/{mathbb {Z}}_n$, $n = 2, 3, ldots$, with $Omega$-deformation and 2D conformal field theories with $mathcal{W}^{, para}_{N, n}$ ($n$-th parafermion $mathcal{W}_N$) symmetry and $widehat{mathfrak{sl}}(n)_N$ symmetry. In this work, we trivialize the factor with $mathcal{W}^{, para}_{N, n}$ symmetry in the 4D $SU(N)$ instanton partition functions on ${mathbb {C}}^2/{mathbb {Z}}_n$ (by using specific choices of parameters and imposing specific conditions on the $N$-tuples of Young diagrams that label the states), and extract the 2D $widehat{mathfrak{sl}}(n)_N$ WZW conformal blocks, $n = 2, 3, ldots$, $N = 1, 2, ldots, .$
108 - Omar Foda , Masahide Manabe 2019
In [1, 2], Nekrasov applied the Bethe/gauge correspondence to derive the $mathfrak{su}, (2)$ XXX spin-chain coordinate Bethe wavefunction from the IR limit of a 2D $mathcal{N}=(2, 2)$ supersymmetric $A_1$ quiver gauge theory with an orbifold-type cod imension-2 defect. Later, Bullimore, Kim and Lukowski implemented Nekrasovs construction at the level of the UV $A_1$ quiver gauge theory, recovered his result, and obtained further extensions of the Bethe/gauge correspondence [3]. In this work, we extend the construction of the defect to $A_M$ quiver gauge theories to obtain the $mathfrak{su} , ( M + 1 )$ XXX spin-chain nested coordinate Bethe wavefunctions. The extension to XXZ spin-chain is straightforward. Further, we apply a Higgsing procedure to obtain more general $A_M$ quivers and the corresponding wavefunctions, and interpret this procedure (and the Hanany-Witten moves that it involves) on the spin-chain side in terms of Izergin-Korepin-type specializations (and re-assignments) of the parameters of the coordinate Bethe wavefunctions.
We show, in a number of simple examples, that Macdonald-type $qt$-deformations of topological string partition functions are equivalent to topological string partition functions that are without $qt$-deformations but with brane condensates, and that these brane condensates lead to geometric transitions.
We show that quantum curves arise in infinite families and have the structure of singular vectors of a relevant symmetry algebra. We analyze in detail the case of the hermitian one-matrix model with the underlying Virasoro algebra, and the super-eige nvalue model with the underlying super-Virasoro algebra. In the Virasoro case we relate singular vector structure of quantum curves to the topological recursion, and in the super-Virasoro case we introduce the notion of super-quantum curves. We also discuss the double quantum structure of the quantum curves and analyze specific examples of Gaussian and multi-Penner models.
In this article, a novel description of the hypergeometric differential equation found from Gelfand-Kapranov-Zelevinskys system (referred to GKZ equation) for Giventals $J$-function in the Gromov-Witten theory will be proposed. The GKZ equation invol ves a parameter $hbar$, and we will reconstruct it as the WKB expansion from the classical limit $hbarto 0$ via the topological recursion. In this analysis, the spectral curve (referred to GKZ curve) plays a central role, and it can be defined as the critical point set of the mirror Landau-Ginzburg potential. Our novel description is derived via the duality relations of the string theories, and various physical interpretations suggest that the GKZ equation is identified with the quantum curve for the brane partition function in the cohomological limit. As an application of our novel picture for the GKZ equation, we will discuss the Stokes matrix for the equivariant $mathbb{C}textbf{P}^{1}$ model and the wall-crossing formula for the total Stokes matrix will be examined. And as a byproduct of this analysis we will study Dubrovins conjecture for this equivariant model.
In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce $beta$-deformed version of those models, and derive differential equations for associated $alpha/beta$-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا