ترغب بنشر مسار تعليمي؟ اضغط هنا

By offering effective modal volumes significantly less than a cubic wavelength, slot-waveguide cavities offer a new in-road into strong atom-photon coupling in the visible regime. Here we explore two-dimensional arrays of coupled slot cavities which underpin designs for novel quantum emulators and polaritonic quantum phase transition devices. Specifically, we investigate the lateral coupling characteristics of diamond-air and GaP-air slot waveguides using numerically-assisted coupled-mode theory, and the longitudinal coupling properties via distributed Bragg reflectors using mode-propagation simulations. We find that slot-waveguide cavities in the Fabry-Perot arrangement can be coupled and effectively treated with a tight-binding description, and are a suitable platform for realizing Jaynes-Cummings-Hubbard physics.
To take existing quantum optical experiments and devices into more practical regimes requires the construction of robust, solid-state implementations. In particular, to observe the strong-coupling regime of atom-photon interactions requires very smal l cavities and large quality factors. Here we show that the slot-waveguide geometry recently introduced for photonic applications is also promising for quantum optical applications in the visible regime. We study diamond- and GaP-based slot-waveguide cavities (SWCs) compatible with diamond colour centres e.g. nitrogen-vacancy (NV) defect, and show that one can achieve increased single-photon Rabi frequencies of order O(10^11) Hz in ultra-small cavity modal volumes, nearly 2 orders of magnitude smaller than previously studied diamond-based photonic crystal cavities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا