ترغب بنشر مسار تعليمي؟ اضغط هنا

240 - David A. Neufeld 2017
We have obtained estimates for the cosmic-ray ionization rate (CRIR) in the Galactic disk, using a detailed model for the physics and chemistry of diffuse interstellar gas clouds to interpret previously-published measurements of the abundance of four molecular ions: ArH$^+$, OH$^+$, H$_2$O$^+$ and H$_3^+$. For diffuse $atomic$ clouds at Galactocentric distances in the range $R_g sim 4 - 9$ kpc, observations of ArH$^+$, OH$^+$, and H$_2$O$^+$ imply a mean primary CRIR of $(2.2 pm 0.3) exp [(R_0-R_g)/4.7,rm{kpc}] times 10^{-16} rm , s^{-1}$ per hydrogen atom, where $R_0=8.5$ kpc. Within diffuse $molecular$ clouds observed toward stars in the solar neighborhood, measurements of H$_3^+$ and H$_2$ imply a primary CRIR of $(2.3 pm 0.6) times 10^{-16},,rm s^{-1}$ per H atom, corresponding to a total ionization rate per H$_2$ molecule of $(5.3 pm 1.1) times 10^{-16},,rm s^{-1},$ in good accord with previous estimates. These estimates are also in good agreement with a rederivation, presented here, of the CRIR implied by recent observations of carbon and hydrogen radio recombination lines along the sight-line to Cas A. Here, our best-fit estimate for the primary CRIR is $2.9 times 10^{-16},,rm s^{-1}$ per H atom. Our results show marginal evidence that the CRIR in diffuse molecular clouds decreases with cloud extinction, $A_{rm V}({rm tot})$, with a best-fit dependence $propto A_{rm V}({rm tot})^{-1}$ for $A_{rm V}({rm tot}) ge 0.5$.
Chemistry plays an important role in the interstellar medium (ISM), regulating heating and cooling of the gas, and determining abundances of molecular species that trace gas properties in observations. Although solving the time-dependent equations is necessary for accurate abundances and temperature in the dynamic ISM, a full chemical network is too computationally expensive to incorporate in numerical simulations. In this paper, we propose a new simplified chemical network for hydrogen and carbon chemistry in the atomic and molecular ISM. We compare results from our chemical network in detail with results from a full photo-dissociation region (PDR) code, and also with the Nelson & Langer (1999) (NL99) network previously adopted in the simulation literature. We show that our chemical network gives similar results to the PDR code in the equilibrium abundances of all species over a wide range of densities, temperature, and metallicities, whereas the NL99 network shows significant disagreement. Applying our network in 1D models, we find that the $mathrm{CO}$-dominated regime delimits the coldest gas and that the corresponding temperature tracks the cosmic ray ionization rate in molecular clouds. We provide a simple fit for the locus of $mathrm{CO}$ dominated regions as a function of gas density and column. We also compare with observations of diffuse and translucent clouds. We find that the $mathrm{CO}$, $mathrm{CHx}$ and $mathrm{OHx}$ abundances are consistent with equilibrium predictions for densities $n=100-1000~mathrm{cm^{-3}}$, but the predicted equilibrium $mathrm{C}$ abundance is higher than observations, signaling the potential importance of non-equilibrium/dynamical effects.
403 - David A. Neufeld 2016
We present a general parameter study, in which the abundance of interstellar argonium (ArH$^+$) is predicted using a model for the physics and chemistry of diffuse interstellar gas clouds. Results have been obtained as a function of UV radiation fiel d, cosmic-ray ionization rate, and cloud extinction. No single set of cloud parameters provides an acceptable fit to the typical ArH$^+$, OH$^+$ and $rm H_2O^+$ abundances observed in diffuse clouds within the Galactic disk. Instead, the observed abundances suggest that ArH$^+$ resides primarily in a separate population of small clouds of total visual extinction of at most 0.02 mag per cloud, within which the column-averaged molecular fraction is in the range $10^{-5} - 10^{-2}$, while OH$^+$ and $rm H_2O^+$ reside primarily in somewhat larger clouds with a column-averaged molecular fraction $sim 0.2$. This analysis confirms our previous suggestion that the argonium molecular ion is a unique tracer of almost purely atomic gas.
We derive the CO-to-H2 conversion factor, X_CO = N(H2)/I_CO, across the Perseus molecular cloud on sub-parsec scales by combining the dust-based N(H2) data with the I_CO data from the COMPLETE Survey. We estimate an average X_CO ~ 3 x 10^19 cm^-2 K^- 1 km^-1 s and find a factor of ~3 variations in X_CO between the five sub-regions in Perseus. Within the individual regions, X_CO varies by a factor of ~100, suggesting that X_CO strongly depends on local conditions in the interstellar medium. We find that X_CO sharply decreases at Av < 3 mag but gradually increases at Av > 3 mag, with the transition occurring at Av where I_CO becomes optically thick. We compare the N(HI), N(H2), I_CO, and X_CO distributions with two models of the formation of molecular gas, a one-dimensional photodissociation region (PDR) model and a three-dimensional magnetohydrodynamic (MHD) model tracking both the dynamical and chemical evolution of gas. The PDR model based on the steady state and equilibrium chemistry reproduces our data very well but requires a diffuse halo to match the observed N(HI) and I_CO distributions. The MHD model generally matches our data well, suggesting that time-dependent effects on H2 and CO formation are insignificant for an evolved molecular cloud like Perseus. However, we find interesting discrepancies, including a broader range of N(HI), likely underestimated I_CO, and a large scatter of I_CO at small Av. These discrepancies likely result from strong compressions/rarefactions and density fluctuations in the MHD model.
We observed H2 line emission with Spitzer-IRS toward M17-SW and modeled the data with our PDR code. Derived gas density values of up to few times 10^7 cm^-3 indicate that H2 emission originates in high-density clumps. We discover that the PDR code ca n be utilized to map the amount of intervening extinction obscuring the H2 emission layers, and thus we obtain the radial profile of A_V relative to the central ionizing cluster NGC 6618. The extinction has a positive radial gradient, varying between 15--47 mag over the projected distance of 0.9--2.5 pc from the primary ionizer, CEN 1. These high extinction values are in good agreement with previous studies of A_V toward stellar targets in M17-SW. The ratio of data to PDR model values is used to infer the global line-of-sight structure of the PDR surface, which is revealed to resemble a concave surface relative to NGC 6618. Such a configuration confirms that this PDR can be described as a bowl-shaped boundary of the central H II region in M17. The derived structure and physical conditions are important for interpreting the fine-structure and rotational line emission from the PDR.
The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H_2 mass. However, a significant H_2 mas s may lie outside the CO region, in the outer regions of the molecular cloud where the gas phase carbon resides in C or C+. Here, H_2 self-shields or is shielded by dust from UV photodissociation, where as CO is photodissociated. This H_2 gas is dark in molecular transitions because of the absence of CO and other trace molecules, and because H_2 emits so weakly at temperatures 10 K < T < 100 K typical of this molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant (~ 0.3 for average visual extinction through the cloud with mean A_V ~ 8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as mean A_V, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing mean A_V, since relatively more molecular H_2 material lies outside the CO region in this case.
We use observations of the CI, CII, HI, and H_2 column densities along lines of sight in the Galactic plane to determine the formation rate of H_2 on grains and to determine chemical reaction rates with Polycyclic Aromatic Hydrocarbons. Photodissocia tion region models are used to find the best fit parameters to the observed columns. We find the H_2 formation rate on grains has a low rate (R ~ 1 x 10^(-17) cm^(3) s^(-1)) along lines of sight with low column density (A_V < 0.25) and low molecular fraction (f_(H_2) < 10^(-4)). At higher column densities (0.25 < A_V <2.13), we find a rate of R ~ 3.5x10^(-17) cm^(3) s^(-1). The lower rate at low column densities could be the result of grain processing by interstellar shocks which may deplete the grain surface area or process the sites of H +H formation, thereby inhibiting H_2 production. Alternatively, the formation rate may be normal, and the low molecular fraction may be the result of lines of sight which graze larger clouds. Such lines of sight would have a reduced H_2 self-shielding compared to the line-of-sight column. We find the reaction C^+ +PAH^- --> C + PAH^0 is best fit with a rate 2.4 x 10^(-7) Phi_PAH T_2^(-0.5) cm^(3) s^(-1) with T_2= T/100 K and the reaction C^+ + PAH^0 --> C + PAH^+ is best fit with a rate 8.8x 10^(-9)Phi_PAH cm^(3) s^(-1). In high column density gas we find Phi_PAH ~ 0.4. In low column density gas, Phi_PAH is less well constrained with Phi_PAH ~ 0.2 - 0.4.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا