ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical Rates on Small Grains and PAHs: C^+ Recombination and H_2 Formation

172   0   0.0 ( 0 )
 نشر من قبل Mark Wolfire
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use observations of the CI, CII, HI, and H_2 column densities along lines of sight in the Galactic plane to determine the formation rate of H_2 on grains and to determine chemical reaction rates with Polycyclic Aromatic Hydrocarbons. Photodissociation region models are used to find the best fit parameters to the observed columns. We find the H_2 formation rate on grains has a low rate (R ~ 1 x 10^(-17) cm^(3) s^(-1)) along lines of sight with low column density (A_V < 0.25) and low molecular fraction (f_(H_2) < 10^(-4)). At higher column densities (0.25 < A_V <2.13), we find a rate of R ~ 3.5x10^(-17) cm^(3) s^(-1). The lower rate at low column densities could be the result of grain processing by interstellar shocks which may deplete the grain surface area or process the sites of H +H formation, thereby inhibiting H_2 production. Alternatively, the formation rate may be normal, and the low molecular fraction may be the result of lines of sight which graze larger clouds. Such lines of sight would have a reduced H_2 self-shielding compared to the line-of-sight column. We find the reaction C^+ +PAH^- --> C + PAH^0 is best fit with a rate 2.4 x 10^(-7) Phi_PAH T_2^(-0.5) cm^(3) s^(-1) with T_2= T/100 K and the reaction C^+ + PAH^0 --> C + PAH^+ is best fit with a rate 8.8x 10^(-9)Phi_PAH cm^(3) s^(-1). In high column density gas we find Phi_PAH ~ 0.4. In low column density gas, Phi_PAH is less well constrained with Phi_PAH ~ 0.2 - 0.4.

قيم البحث

اقرأ أيضاً

With the high-resolution spectroscopy now available in the optical and satellite UV, it is possible to determine the neutral/ionized column density ratios for several different elements in a single cloud. Assuming ionization equilibrium for each elem ent, one can make several independent determinations of the electron density. For the clouds for which such an analysis has been carried out, these different estimates disagree by large factors, suggesting that some process (or processes) besides photoionization and radiative recombination might play an important role in the ionization balance. One candidate process is collisions of ions with dust grains. Making use of recent work quantifying the abundances of polycyclic aromatic hydrocarbon molecules and other grains in the interstellar medium, as well as recent models for grain charging, we estimate the grain-assisted ion recombination rates for several astrophysically important elements. We find that these rates are comparable to the rates for radiative recombination for conditions typical of the cold neutral medium. Including grain-assisted ion recombination in the ionization equilibrium analysis leads to increased consistency in the various electron density estimates for the gas along the line of sight to 23 Orionis. However, not all of the discrepancies can be eliminated in this way; we speculate on some other processes that might play a role. We also note that grain-assisted recombination of H+ and He+ leads to significantly lower electron fractions than usually assumed for the cold neutral medium.
We use a series of N-body/smoothed particle hydrodynamics simulations and analytic arguments to show that the presence of an effective temperature floor in the interstellar medium at T_F ~ 10^4 K naturally explains the tendency for low-mass galaxies to be more spheroidal, more gas rich, and less efficient in converting baryons into stars than larger galaxies. The trend arises because gas pressure support becomes important compared to angular momentum support in small dark matter haloes. We suggest that dwarf galaxies with rotational velocities ~ 40 km/s do not originate as thin discs, but rather are born as thick, puffy systems. If accreted on to larger haloes, tenuous dwarfs of this kind will be more susceptible to gas loss or tidal transformation than scaled-do
Following our initial discovery of blue luminescence in the spectrum of the Red Rectangle (RR) and its identification as fluorescence by small three- to four-ringed polycyclic aromatic hydrocarbon (PAH) molecules, we report on the spatial correlation between the blue luminescence and the 3.3 micron emission, commonly attributed to small, neutral PAH molecules, and on the newly-derived UV/optical attenuation curve for the central source of the RR, HD 44179. Both results provide strong additional evidence for the presence of small PAH molecules with masses of less than 250 a.m.u. in the RR, which supports the attribution of the blue luminescence to fluorescence by the same molecules. We contrast the excellent spatial correlation of the two former emissions with the distinctly different spatial distribution of the extended red emission (ERE) and of the dust-scattered light within the RR. The UV/optical attenuation curve of the central star is unlike any interstellar extinction curve and is interpreted as resulting from circumstellar opacity alone. Major contributions to this opacity are absorptions in broad bands in the mid-UV, contributing to the electronic excitation of the luminescing PAH molecules, and a sharp ionization discontinuity near 7.5 eV in the far-UV, which places a sharp upper limit on the masses of the PAH molecules that are responsible for this absorption. The strength of the far-UV absorption leads to an abundance of the PAH molecules of 10^{-5} relative to hydrogen in the RR. Such small PAHs are perhaps unique to the environment in the RR, where they are shielded from harsh radiation by the dense circmstellar disk.
Blue Luminescence (BL) was first discovered in a proto-planetary nebula, the Red Rectangle (RR) surrounding the post-AGB star HD 44179. BL has been attributed to fluorescence by small, 3-4 ringed neutral polycyclic aromatic hydrocarbon (PAH) molecule s, and was thought to be unique to the RR environment where such small molecules are actively being produced and shielded from the harsh interstellar radiation by a dense circumstellar disk. In this paper we present the BL spectrum detected in several ordinary reflection nebulae illuminated by stars having temperatures between 10,000 -- 23,000 K. All these nebulae are known to also exhibit the infrared emission features called aromatic emission features (AEFs) attributed to large PAHs. We present the spatial distribution of the BL in these nebulae. In the case of Ced~112, the BL is spatially correlated with mid-IR emission structures attributed to AEFs. These observations provide evidence for grain processing and possibly for in-situ formation of small grains and large molecules from larger aggregates. Most importantly, the detection of BL in these ordinary reflection nebulae suggests that the BL carrier is an ubiquitous component of the ISM and is not restricted to the particular environment of the RR.
Paircorrelations and the magnetic susceptibility of electrons in a spherical cavity are studied both for grand canonical and the canonical ensemble. The coupling constant of the $BCS$ Hamiltonian is adjusted to experimental values of the gap paramete r. The gap parameter is found to increase for small grains as a consequence of the pronounced shell structure in the spectrum of the spherical cavity. The sharp phase transition at $T_c$ is smeared out for the canonical ensemble. The strong paramagnetic susceptibility of the normal electrons in the cavity is reduced by the superconductivity, but it remains positive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا