ترغب بنشر مسار تعليمي؟ اضغط هنا

The chemistry of interstellar argonium and other probes of the molecular fraction in diffuse clouds

404   0   0.0 ( 0 )
 نشر من قبل David Neufeld
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David A. Neufeld




اسأل ChatGPT حول البحث

We present a general parameter study, in which the abundance of interstellar argonium (ArH$^+$) is predicted using a model for the physics and chemistry of diffuse interstellar gas clouds. Results have been obtained as a function of UV radiation field, cosmic-ray ionization rate, and cloud extinction. No single set of cloud parameters provides an acceptable fit to the typical ArH$^+$, OH$^+$ and $rm H_2O^+$ abundances observed in diffuse clouds within the Galactic disk. Instead, the observed abundances suggest that ArH$^+$ resides primarily in a separate population of small clouds of total visual extinction of at most 0.02 mag per cloud, within which the column-averaged molecular fraction is in the range $10^{-5} - 10^{-2}$, while OH$^+$ and $rm H_2O^+$ reside primarily in somewhat larger clouds with a column-averaged molecular fraction $sim 0.2$. This analysis confirms our previous suggestion that the argonium molecular ion is a unique tracer of almost purely atomic gas.



قيم البحث

اقرأ أيضاً

124 - Haoyu Fan 2017
We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form [$f$(H$_2$)], with comparisons to the corresponding behavior of various known atom ic and molecular species. The equivalent widths of the five normal DIBs ($lambdalambda$5780.5, 5797.1, 6196.0, 6283.8, and 6613.6), normalized to $E(B-V)$, show a Lambda-shaped behavior: they increase at low $f$(H$_2$), peak at $f$(H$_2$) ~ 0.3, and then decrease. The similarly normalized column densities of Ca, Ca$^+$, Ti$^+$, and CH$^+$ also decline for $f$(H$_2$) > 0.3. In contrast, the normalized column densities of Na, K, CH, CN, and CO increase monotonically with $f$(H$_2$), and the trends exhibited by the three C$_2$ DIBs ($lambdalambda$4726.8, 4963.9, and 4984.8) lie between those two general behaviors. These trends with $f$(H$_2$) are accompanied by cosmic scatter, the dispersion at any given $f$(H$_2$) being significantly larger than the individual errors of measurement. The Lambda-shaped trends suggest the balance between creation and destruction of the DIB carriers differs dramatically between diffuse atomic and diffuse molecular clouds; additional processes besides ionization and shielding are needed to explain those observed trends. Except for several special cases, the highest $W$(5780)/$W$(5797) ratios, characterizing the so-called sigma-zeta effect, occur only at $f$(H$_2$) < 0.2. We propose a sequence of DIBs based on trends in their pair-wise strength ratios with increasing $f$(H$_2$). In order of increasing environmental density, we find the $lambda$6283.8 and $lambda$5780.5 DIBs, the $lambda$6196.0 DIB, the $lambda$6613.6 DIB, the $lambda$5797.1 DIB, and the C$_2$ DIBs.
We describe the assignment of a previously unidentified interstellar absorption line to ArH$^+$ and discuss its relevance in the context of hydride absorption in diffuse gas with a low H$_2$ fraction. The column densities along several lines of sight are determined and discussd in the framework of chemical models. The column densities of ArH$^+$ are compared to those of other species, tracing interstellar medium (ISM) components with different H$_2$ abundances. Chemical models are constructed, taking UV radiation and cosmic ray ionization into account. Due to the detection of two isotopologues, $^{36}$ArH$^+$ and $^{38}$ArH$^+$, we are confident about the carrier assignment to ArH$^+$. NeH$^+$ is not detected with a limit of [NeH$^+$]/[ArH$^+$] $le$ 0.1. The derived column densities agree well with the predictions of chemical models. ArH$^+$ is a unique tracer of gas with a fractional H$_2$ abundance of $10^{-4}- 10^{-3}$ and shows little correlation with H$_2$O$^+$, which traces gas with a fractional H$_2$ abundance of $approx $0.1. A careful analysis of variations in the ArH$^+$, OH$^+$, H$_2$O$^+$ and HF column densities promises to be a faithful tracer of the distribution of the H$_2$ fractional abundance, providing unique information on a poorly known phase in the cycle of interstellar matter, its transition from atomic diffuse gas to dense molecular gas traced by CO emission. Abundances of these species put strong observational constraints upon magnetohydrodynamical (MHD) simulations of the interstellar medium, and potentially could evolve into a tool to characterize the ISM. Paradoxically, the ArH$^+$ molecule is a better tracer of ew{almost} purely atomic hydrogen gas than H{sc i} itself, since H{sc i} can also be present in gas with a significant molecular content, but ArH$^+$ singles out gas that is $>99.9$% atomic.
The 1-50 GHz GBT PRIMOS data contains ~50 molecular absorption lines observed in diffuse and translucent clouds located in the Galactic Center, Bar, and spiral arms in the line-of-sight to Sgr B2(N). We measure the column densities and estimate abund ances, relative to H2, of 11 molecules and additional isotopologues. We use absorption by optically thin transitions of c-C3H2 to estimate the N(H2), and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. We discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic Bar and in or near the Galactic Center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance; the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C:13C ratio, whereas H2CO/H2^13CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of A_V.
One of the surprises of the Herschel mission was the detection of ArH+ towards the Crab Nebula in emission and in absorption towards strong Galactic background sources. Although these detections were limited to the first quadrant of the Galaxy, the e xisting data suggest that ArH+ ubiquitously and exclusively probes the diffuse atomic regions of the ISM. In this study, we extend the coverage of ArH+ to other parts of the Galaxy with new observations of its J = 1-0 transition along seven Galactic sight lines towards bright sub-mm continuum sources. We aim to benchmark its efficiency as a tracer of purely atomic gas by evaluating its correlation (or lack there of) with other well-known atomic and molecular gas tracers. The observations of ArH+ near 617.5 GHz were made feasible with the new, sensitive SEPIA660 receiver on the APEX 12 m telescope. The two sidebands of this receiver allowed us to observe p-H2O+ transitions of at 607.227 GHz simultaneously with the ArH+ line. By analysing the steady state chemistry of OH+ and o-H2O+, we derive on average a cosmic-ray ionisation rate (CRIR), of 2.3e-16 s^-1 towards the sight lines studied in this work. Using the derived values of the CRIR and the observed ArH+ abundances we constrain the molecular fraction of the gas traced by ArH+ to lie below 2e-2 with a median value of 8.8e-4. Combined, our observations of ArH+, OH+, H2O+, and CH probe different regimes of the ISM, from diffuse atomic to diffuse and translucent molecular clouds. Over Galactic scales, we see that the distribution of N(ArH+) is associated with that of N(H), particularly in the inner Galaxy with potentially even contributions from the warm neutral medium phase of atomic gas at larger galactocentric distances. We derive an average o/p-ratio for H2O+ of 2.1, which corresponds to a nuclear spin temperature of 41 K, consistent with the typical gas temperatures of diffuse clouds.
We report the detection of absorption by interstellar hydroxyl cations and water cations, along the sight-line to the bright continuum source W49N. We have used Herschels HIFI instrument, in dual beam switch mode, to observe the 972 GHz N = 1 - 0 tra nsition of OH+ and the 1115 GHz 1(11) - 0(00) transition of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong absorption by OH+, in foreground material at velocities in the range 0 to 70 km/s with respect to the local standard of rest. The inferred OH+/H2O+ abundance ratio ranges from ~ 3 to ~ 15, implying that the observed OH+ arises in clouds of small molecular fraction, in the 2 - 8% range. This conclusion is confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which is similar to that of atomic hydrogen, as observed by means of 21 cm absorption measurements, and dissimilar from that typical of other molecular tracers. The observed OH+/H abundance ratio of a few E-8 suggests a cosmic ray ionization rate for atomic hydrogen of (0.6 - 2.4) E-16 s-1, in good agreement with estimates inferred previously for diffuse clouds in the Galactic disk from observations of interstellar H3+ and other species.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا