ترغب بنشر مسار تعليمي؟ اضغط هنا

Commonly-used transformer language models depend on a tokenization schema which sets an unchangeable subword vocabulary prior to pre-training, destined to be applied to all downstream tasks regardless of domain shift, novel word formations, or other sources of vocabulary mismatch. Recent work has shown that token-free models can be trained directly on characters or bytes, but training these models from scratch requires substantial computational resources, and this implies discarding the many domain-specific models that were trained on tokens. In this paper, we present XRayEmb, a method for retrofitting existing token-based models with character-level information. XRayEmb is composed of a character-level encoder that computes vector representations of character sequences, and a generative component that decodes from the internal representation to a character sequence. We show that incorporating XRayEmbs learned vectors into sequences of pre-trained token embeddings helps performance on both autoregressive and masked pre-trained transformer architectures and on both sequence-level and sequence tagging tasks, particularly on non-standard English text.
Neural topic models can augment or replace bag-of-words inputs with the learned representations of deep pre-trained transformer-based word prediction models. One added benefit when using representations from multilingual models is that they facilitat e zero-shot polylingual topic modeling. However, while it has been widely observed that pre-trained embeddings should be fine-tuned to a given task, it is not immediately clear what supervision should look like for an unsupervised task such as topic modeling. Thus, we propose several methods for fine-tuning encoders to improve both monolingual and zero-shot polylingual neural topic modeling. We consider fine-tuning on auxiliary tasks, constructing a new topic classification task, integrating the topic classification objective directly into topic model training, and continued pre-training. We find that fine-tuning encoder representations on topic classification and integrating the topic classification task directly into topic modeling improves topic quality, and that fine-tuning encoder representations on any task is the most important factor for facilitating cross-lingual transfer.
Multiple studies have demonstrated that behavior on internet-based social media platforms can be indicative of an individuals mental health status. The widespread availability of such data has spurred interest in mental health research from a computa tional lens. While previous research has raised concerns about possible biases in models produced from this data, no study has quantified how these biases actually manifest themselves with respect to different demographic groups, such as gender and racial/ethnic groups. Here, we analyze the fairness of depression classifiers trained on Twitter data with respect to gender and racial demographic groups. We find that model performance systematically differs for underrepresented groups and that these discrepancies cannot be fully explained by trivial data representation issues. Our study concludes with recommendations on how to avoid these biases in future research.
Drawing causal conclusions from observational data requires making assumptions about the true data-generating process. Causal inference research typically considers low-dimensional data, such as categorical or numerical fields in structured medical r ecords. High-dimensional and unstructured data such as natural language complicates the evaluation of causal inference methods; such evaluations rely on synthetic datasets with known causal effects. Models for natural language generation have been widely studied and perform well empirically. However, existing methods not immediately applicable to producing synthetic datasets for causal evaluations, as they do not allow for quantifying a causal effect on the text itself. In this work, we develop a framework for adapting existing generation models to produce synthetic text datasets with known causal effects. We use this framework to perform an empirical comparison of four recently-proposed methods for estimating causal effects from text data. We release our code and synthetic datasets.
Data-driven methods for mental health treatment and surveillance have become a major focus in computational science research in the last decade. However, progress in the domain, in terms of both medical understanding and system performance, remains b ounded by the availability of adequate data. Prior systematic reviews have not necessarily made it possible to measure the degree to which data-related challenges have affected research progress. In this paper, we offer an analysis specifically on the state of social media data that exists for conducting mental health research. We do so by introducing an open-source directory of mental health datasets, annotated using a standardized schema to facilitate meta-analysis.
Cross-language entity linking grounds mentions in multiple languages to a single-language knowledge base. We propose a neural ranking architecture for this task that uses multilingual BERT representations of the mention and the context in a neural ne twork. We find that the multilingual ability of BERT leads to robust performance in monolingual and multilingual settings. Furthermore, we explore zero-shot language transfer and find surprisingly robust performance. We investigate the zero-shot degradation and find that it can be partially mitigated by a proposed auxiliary training objective, but that the remaining error can best be attributed to domain shift rather than language transfer.
99 - Shijie Wu , Mark Dredze 2020
Multilingual BERT (mBERT), XLM-RoBERTa (XLMR) and other unsupervised multilingual encoders can effectively learn cross-lingual representation. Explicit alignment objectives based on bitexts like Europarl or MultiUN have been shown to further improve these representations. However, word-level alignments are often suboptimal and such bitexts are unavailable for many languages. In this paper, we propose a new contrastive alignment objective that can better utilize such signal, and examine whether these previous alignment methods can be adapted to noisier sources of aligned data: a randomly sampled 1 million pair subset of the OPUS collection. Additionally, rather than report results on a single dataset with a single model run, we report the mean and standard derivation of multiple runs with different seeds, on four datasets and tasks. Our more extensive analysis finds that, while our new objective outperforms previous work, overall these methods do not improve performance with a more robust evaluation framework. Furthermore, the gains from using a better underlying model eclipse any benefits from alignment training. These negative results dictate more care in evaluating these methods and suggest limitations in applying explicit alignment objectives.
126 - Shijie Wu , Mark Dredze 2020
Multilingual BERT (mBERT) trained on 104 languages has shown surprisingly good cross-lingual performance on several NLP tasks, even without explicit cross-lingual signals. However, these evaluations have focused on cross-lingual transfer with high-re source languages, covering only a third of the languages covered by mBERT. We explore how mBERT performs on a much wider set of languages, focusing on the quality of representation for low-resource languages, measured by within-language performance. We consider three tasks: Named Entity Recognition (99 languages), Part-of-speech Tagging, and Dependency Parsing (54 languages each). mBERT does better than or comparable to baselines on high resource languages but does much worse for low resource languages. Furthermore, monolingual BERT models for these languages do even worse. Paired with similar languages, the performance gap between monolingual BERT and mBERT can be narrowed. We find that better models for low resource languages require more efficient pretraining techniques or more data.
Technical and fundamental analysis are traditional tools used to analyze individual stocks; however, the finance literature has shown that the price movement of each individual stock correlates heavily with other stocks, especially those within the s ame sector. In this paper we propose a general purpose market representation that incorporates fundamental and technical indicators and relationships between individual stocks. We treat the daily stock market as a market image where rows (grouped by market sector) represent individual stocks and columns represent indicators. We apply a convolutional neural network over this market image to build market features in a hierarchical way. We use a recurrent neural network, with an attention mechanism over the market feature maps, to model temporal dynamics in the market. We show that our proposed model outperforms strong baselines in both short-term and long-term stock return prediction tasks. We also show another use for our market image: to construct concise and dense market embeddings suitable for downstream prediction tasks.
82 - Nanyun Peng , Mark Dredze 2016
Many domain adaptation approaches rely on learning cross domain shared representations to transfer the knowledge learned in one domain to other domains. Traditional domain adaptation only considers adapting for one task. In this paper, we explore mul ti-task representation learning under the domain adaptation scenario. We propose a neural network framework that supports domain adaptation for multiple tasks simultaneously, and learns shared representations that better generalize for domain adaptation. We apply the proposed framework to domain adaptation for sequence tagging problems considering two tasks: Chinese word segmentation and named entity recognition. Experiments show that multi-task domain adaptation works better than disjoint domain adaptation for each task, and achieves the state-of-the-art results for both tasks in the social media domain.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا