ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Synthetic Text Data to Evaluate Causal Inference Methods

111   0   0.0 ( 0 )
 نشر من قبل Zach Wood-Doughty
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Drawing causal conclusions from observational data requires making assumptions about the true data-generating process. Causal inference research typically considers low-dimensional data, such as categorical or numerical fields in structured medical records. High-dimensional and unstructured data such as natural language complicates the evaluation of causal inference methods; such evaluations rely on synthetic datasets with known causal effects. Models for natural language generation have been widely studied and perform well empirically. However, existing methods not immediately applicable to producing synthetic datasets for causal evaluations, as they do not allow for quantifying a causal effect on the text itself. In this work, we develop a framework for adapting existing generation models to produce synthetic text datasets with known causal effects. We use this framework to perform an empirical comparison of four recently-proposed methods for estimating causal effects from text data. We release our code and synthetic datasets.

قيم البحث

اقرأ أيضاً

Going beyond correlations, the understanding and identification of causal relationships in observational time series, an important subfield of Causal Discovery, poses a major challenge. The lack of access to a well-defined ground truth for real-world data creates the need to rely on synthetic data for the evaluation of these methods. Existing benchmarks are limited in their scope, as they either are restricted to a static selection of data sets, or do not allow for a granular assessment of the methods performance when commonly made assumptions are violated. We propose a flexible and simple to use framework for generating time series data, which is aimed at developing, evaluating, and benchmarking time series causal discovery methods. In particular, the framework can be used to fine tune novel methods on vast amounts of data, without overfitting them to a benchmark, but rather so they perform well in real-world use cases. Using our framework, we evaluate prominent time series causal discovery methods and demonstrate a notable degradation in performance when their assumptions are invalidated and their sensitivity to choice of hyperparameters. Finally, we propose future research directions and how our framework can support both researchers and practitioners.
472 - Xiao Liu , Da Yin , Yansong Feng 2021
Causal inference is the process of capturing cause-effect relationship among variables. Most existing works focus on dealing with structured data, while mining causal relationship among factors from unstructured data, like text, has been less examine d, but is of great importance, especially in the legal domain. In this paper, we propose a novel Graph-based Causal Inference (GCI) framework, which builds causal graphs from fact descriptions without much human involvement and enables causal inference to facilitate legal practitioners to make proper decisions. We evaluate the framework on a challenging similar charge disambiguation task. Experimental results show that GCI can capture the nuance from fact descriptions among multiple confusing charges and provide explainable discrimination, especially in few-shot settings. We also observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
Does adding a theorem to a paper affect its chance of acceptance? Does labeling a post with the authors gender affect the post popularity? This paper develops a method to estimate such causal effects from observational text data, adjusting for confou nding features of the text such as the subject or writing quality. We assume that the text suffices for causal adjustment but that, in practice, it is prohibitively high-dimensional. To address this challenge, we develop causally sufficient embeddings, low-dimensional document representations that preserve sufficient information for causal identification and allow for efficient estimation of causal effects. Causally sufficient embeddings combine two ideas. The first is supervised dimensionality reduction: causal adjustment requires only the aspects of text that are predictive of both the treatment and outcome. The second is efficient language modeling: representations of text are designed to dispose of linguistically irrelevant information, and this information is also causally irrelevant. Our method adapts language models (specifically, word embeddings and topic models) to learn document embeddings that are able to predict both treatment and outcome. We study causally sufficient embeddings with semi-synthetic datasets and find that they improve causal estimation over related embedding methods. We illustrate the methods by answering the two motivating questions---the effect of a theorem on paper acceptance and the effect of a gender label on post popularity. Code and data available at https://github.com/vveitch/causal-text-embeddings-tf2}{github.com/vveitch/causal-text-embeddings-tf2
We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5, enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored f or data-to-text generation, as well as alternative language model based pre-training techniques such as BERT and GPT-2. Importantly, T5 pre-training leads to better generalization, as evidenced by large improvements on out-of-domain test sets. We hope our work serves as a useful baseline for future research, as transfer learning becomes ever more prevalent for data-to-text tasks.
Lifecycle models for research data are often abstract and simple. This comes at the danger of oversimplifying the complex concepts of research data management. The analysis of 90 different lifecycle models lead to two approaches to assess the quality of these models. While terminological issues make direct comparisons of models hard, an empirical evaluation seems possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا