ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the influence of plasma treatments, especially a 0V-bias, potentially low damage O$_2$ plasma as well as a biased Ar/SF$_6$/O$_2$ plasma on shallow, negative nitrogen vacancy (NV$^-$) centers. We ignite and sustain using our 0V-bias pl asma using purely inductive coupling. To this end, we pre-treat surfaces of high purity chemical vapor deposited single-crystal diamond (SCD). Subsequently, we create $sim$10 nm deep NV$^-$ centers via implantation and annealing. Onto the annealed SCD surface, we fabricate nanopillar structures that efficiently waveguide the photoluminescence (PL) of shallow NV$^-$. Characterizing single NV$^-$ inside these nanopillars, we find that the Ar/SF$_6$/O$_2$ plasma treatment quenches NV$^-$ PL even considering that the annealing and cleaning steps following ion implantation remove any surface termination. In contrast, for our 0V-bias as well as biased O$_2$ plasma, we observe stable NV$^-$ PL and low background fluorescence from the photonic nanostructures.
In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (< 1$mu$m) platforms, are highly relevant for nanoscale sensing . The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices.
Powered by the mutual developments in instrumentation, materials andtheoretical descriptions, sensing and imaging capabilities of quantum emitters insolids have significantly increased in the past two decades. Quantum emitters insolids, whose propert ies resemble those of atoms and ions, provide alternative waysto probing natural and artificial nanoscopic systems with minimum disturbance andultimate spatial resolution. Among those emerging quantum emitters, the nitrogen-vacancy (NV) color center in diamond is an outstanding example due to its intrinsicproperties at room temperature (highly-luminescent, photo-stable, biocompatible,highly-coherent spin states). This review article summarizes recent advances andachievements in using NV centers within nano- and single crystal diamonds in sensingand imaging. We also highlight prevalent challenges and material aspects for differenttypes of diamond and outline the main parameters to consider when using color centersas sensors. As a novel sensing resource, we highlight the properties of NV centersas light emitting electrical dipoles and their coupling to other nanoscale dipoles e.g.graphene.
Energy transfer between fluorescent probes lies at the heart of many applications ranging from bio-sensing and -imaging to enhanced photo-detection and light harvesting. In this work, we study Forster resonance energy transfer (FRET) between shallow defects in diamond --- nitrogen-vacancy (NV) centers --- and atomically-thin, two-dimensional materials --- tungsten diselenide (WSe$_2$). By means of fluorescence lifetime imaging, we demonstrate the occurrence of FRET in the WSe$_2$/NV system. Further, we show that in the coupled system, NV centers provide an additional excitation pathway for WSe$_2$ photoluminescence. Our results constitute the first step towards the realization of hybrid quantum systems involving single-crystal diamond and two-dimensional materials that may lead to new strategies for studying and controlling spin transfer phenomena and spin valley physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا