ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove a Torelli theorem for the moduli space of semistable parabolic Higgs bundles over a smooth complex projective algebraic curve under the assumption that the parabolic weight system is generic. When the genus is at least two, using this result we also prove a Torelli theorem for the moduli space of semistable parabolic bundles of rank at least two with generic parabolic weights. The key input in the proofs is a method of J.C. Hurtubise, Integrable systems and algebraic surfaces, Duke Math. Jour. 83 (1996), 19--49.
Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ ar e precisely the irreducible components of the nilpotent cone in $M_H(r,d)$. This generalizes to Higgs $G$-bundles and also to the parabolic Higgs bundles.
We compute the Hodge polynomials for the moduli space of representations of an elliptic curve with two marked points into SL(2,C). When we fix the conjugacy classes of the representations around the marked points to be diagonal and of modulus one, th e character variety is diffeomorphic to the moduli space of strongly parabolic Higgs bundles, whose Betti numbers are known. In that case we can recover some of the Hodge numbers of the character variety. We extend this result to the moduli space of doubly periodic instantons.
We compute the Hodge-Deligne polynomials of the moduli spaces of representations of the fundamental group of a complex surface into SL(2,C), for the case of small genus g, and allowing the holonomy around a fixed point to be any matrix of SL(2,C), th at is Id, -Id, diagonalisable, or of either of the two Jordan types. For this, we introduce a new geometric technique, based on stratifying the space of representations, and on the analysis of the behaviour of the Hodge-Deligne polynomial under fibrations.
In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid o ver the moduli space of parabolic vector bundles. By considering the case of full flags, we get a Grothendieck-Springer resolution for all other flag types, in particular for the moduli spaces of twisted Higgs bundles, as studied by Markman and Bottacin and used in the recent work of Laumon-Ng^o. We discuss the Hitchin system, and demonstrate that all these moduli spaces are integrable systems in the Poisson sense.
We show that the Brauer group of any moduli space of stable pairs with fixed determinant over a curve is zero.
Let $X$ be a compact Riemann surface $X$ of genus at--least two. Fix a holomorphic line bundle $L$ over $X$. Let $mathcal M$ be the moduli space of Hitchin pairs $(E ,phiin H^0(End(E)otimes L))$ over $X$ of rank $r$ and fixed determinant of degree $d $. We prove that, for some numerical conditions, $mathcal M$ is irreducible, and that the isomorphism class of the variety $mathcal M$ uniquely determines the isomorphism class of the Riemann surface $X$.
In this article we extend the proof given by Biswas and Gomez of a Torelli theorem for the moduli space of Higgs bundles with fixed determinant, to the parabolic situation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا