ترغب بنشر مسار تعليمي؟ اضغط هنا

Hodge-Deligne polynomials of SL(2,C)-character varieties for curves of small genus

250   0   0.0 ( 0 )
 نشر من قبل Vicente Munoz
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the Hodge-Deligne polynomials of the moduli spaces of representations of the fundamental group of a complex surface into SL(2,C), for the case of small genus g, and allowing the holonomy around a fixed point to be any matrix of SL(2,C), that is Id, -Id, diagonalisable, or of either of the two Jordan types. For this, we introduce a new geometric technique, based on stratifying the space of representations, and on the analysis of the behaviour of the Hodge-Deligne polynomial under fibrations.



قيم البحث

اقرأ أيضاً

We calculate the E-polynomials of certain twisted GL(n,C)-character varieties M_n of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type GL(n,F_q) and a theorem proved in the appendix by N. Katz. We deduce from this calculation several geometric results, for example, the value of the topological Euler characteristic of the associated PGL(n,C)-character variety. The calculation also leads to several conjectures about the cohomology of M_n: an explicit conjecture for its mixed Hodge polynomial; a conjectured curious Hard Lefschetz theorem and a conjecture relating the pure part to absolutely indecomposable representations of a certain quiver. We prove these conjectures for n = 2.
We compute the Hodge polynomials for the moduli space of representations of an elliptic curve with two marked points into SL(2,C). When we fix the conjugacy classes of the representations around the marked points to be diagonal and of modulus one, th e character variety is diffeomorphic to the moduli space of strongly parabolic Higgs bundles, whose Betti numbers are known. In that case we can recover some of the Hodge numbers of the character variety. We extend this result to the moduli space of doubly periodic instantons.
We calculate the E-polynomial for a class of the (complex) character varieties $mathcal{M}_n^{tau}$ associated to a genus $g$ Riemann surface $Sigma$ equipped with an orientation reversing involution $tau$. Our formula expresses the generating functi on $sum_{n=1}^{infty} E(mathcal{M}_n^{tau}) T^n$ as the plethystic logarithm of a product of sums indexed by Young diagrams. The proof uses point counting over finite fields, emulating Hausel and Rodriguez-Villegas.
We investigate the geometry of etale $4:1$ coverings of smooth complex genus 2 curves with the monodromy group isomorphic to the Klein four-group. There are two cases, isotropic and non-isotropic depending on the values of the Weil pairing restricted to the group defining the covering. We recall from our previous work cite{bo} the results concerning the non-isotropic case and fully describe the isotropic case. We show that the necessary information to construct the Klein coverings is encoded in the 6 points on $mathbb{P}^1$ defining the genus 2 curve. The main result of the paper is the fact that, in both cases the Prym map associated to these coverings is injective. Additionally, we provide a concrete description of the closure of the image of the Prym map inside the corresponding moduli space of polarised abelian varieties.
For G = GL_2, PGL_2 and SL_2 we prove that the perverse filtration associated to the Hitchin map on the cohomology of the moduli space of twisted G-Higgs bundles on a Riemann surface C agrees with the weight filtration on the cohomology of the twiste d G character variety of C, when the cohomologies are identified via non-Abelian Hodge theory. The proof is accomplished by means of a study of the topology of the Hitchin map over the locus of integral spectral curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا