ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring entanglement is a demanding task that usually requires full tomography of a quantum system, involving a number of observables that grows exponentially with the number of parties. Recently, it was suggested that adding a single ancillary qub it would allow for the efficient measurement of concurrence, and indeed any entanglement monotone associated to antilinear operations. Here, we report on the experimental implementation of such a device---an embedding quantum simulator---in photonics, encoding the entangling dynamics of a bipartite system into a tripartite one. We show that bipartite concurrence can be efficiently extracted from the measurement of merely two observables, instead of fifteen, without full tomographic information.
Tests such as Bells inequality and Hardys paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the t ime domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardys paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا