ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Entanglement in a Photonic Embedding Quantum Simulator

534   0   0.0 ( 0 )
 نشر من قبل Juan Carlos Loredo Rosillo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring entanglement is a demanding task that usually requires full tomography of a quantum system, involving a number of observables that grows exponentially with the number of parties. Recently, it was suggested that adding a single ancillary qubit would allow for the efficient measurement of concurrence, and indeed any entanglement monotone associated to antilinear operations. Here, we report on the experimental implementation of such a device---an embedding quantum simulator---in photonics, encoding the entangling dynamics of a bipartite system into a tripartite one. We show that bipartite concurrence can be efficiently extracted from the measurement of merely two observables, instead of fifteen, without full tomographic information.



قيم البحث

اقرأ أيضاً

Multipartite entanglement tomography, namely the quantum Fisher information (QFI) calculated with respect to different collective operators, allows to fully characterize the phase diagram of the quantum Ising chain in a transverse field with variable -range coupling. In particular, it recognizes the phase stemming from long-range antiferromagnetic coupling, a capability also shared by the spin squeezing. Furthermore, the QFI locates the quantum critical points, both with vanishing and nonvanishing mass gap. In this case, we also relate the finite-size power-law exponent of the QFI to the critical exponents of the model, finding a signal for the breakdown of conformal invariance in the deep long-range regime. Finally, the effect of a finite temperature on the multipartite entanglement, and ultimately on the phase stability, is considered. In light of the current realizations of the model with trapped ions and of the potential measurability of the QFI, our approach yields a promising strategy to probe long-range physics in controllable quantum systems.
We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, by using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored $1righ tarrow 2$ cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore prepare clones with no bias but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirror
We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable encoding of a simulated quantum dynamics in t he enlarged Hilbert space of an embedding quantum simulator. In this manner, entanglement monotones are conveniently mapped onto physical observables, overcoming the necessity of full tomography and reducing drastically the experimental requirements. Furthermore, this method is directly applicable to pure states and, assisted by classical algorithms, to the mixed-state case. Finally, we expect that the proposed embedding framework paves the way for a general theory of enhanced one-to-one quantum simulators.
Photonic quantum networking relies on entanglement distribution between distant nodes, typically realized by swapping procedures. However, entanglement swapping is a demanding task in practice, mainly because of limited effectiveness of entangled pho ton sources and Bell-state measurements necessary to realize the process. Here we experimentally activate a remote distribution of two-photon polarization entanglement which supersedes the need for initial entangled pairs and traditional Bell-state measurements. This alternative procedure is accomplished thanks to the controlled spatial indistinguishability of four independent photons in three separated nodes of the network, which enables us to perform localized product-state measurements on the central node acting as a trigger. This experiment proves that the inherent indistinguishability of identical particles supplies new standards for feasible quantum communication in multinode photonic quantum networks.
156 - T. H. Johnson , S. R. Clark , 2014
Quantum simulators are devices that actively use quantum effects to answer questions about model systems and, through them, real systems. Here we expand on this definition by answering several fundamental questions about the nature and use of quantum simulators. Our answers address two important areas. First, the difference between an operation termed simulation and another termed computation. This distinction is related to the purpose of an operation, as well as our confidence in and expectation of its accuracy. Second, the threshold between quantum and classical simulations. Throughout, we provide a perspective on the achievements and directions of the field of quantum simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا