ﻻ يوجد ملخص باللغة العربية
Tests such as Bells inequality and Hardys paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardys paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.
The original formula of Bell inequality (BI) in terms of two-spin singlet has to be modified for the entangled-state with parallel spin polarization. Based on classical statistics of the particle-number correlation, we prove in this paper an extended
Here we present the most general framework for $n$-particle Hardys paradoxes, which include Hardys original one and Cerecedas extension as special cases. Remarkably, for any $nge 3$ we demonstrate that there always exist generalized paradoxes (with t
A finite non-classical framework for physical theory is described which challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the universe as a determinis
We establish a quantitative relation between Hardys paradox and the breaking of uncertainty principle in the sense of measurement-disturbance relations in the conditional measurement of non-commuting operators. The analysis of the inconsistency of lo
We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement cha