ترغب بنشر مسار تعليمي؟ اضغط هنا

Since the recent introduction of several viable vaccines for SARS-CoV-2, vaccination uptake has become the key factor that will determine our success in containing the COVID-19 pandemic. We argue that game theory and social network models should be u sed to guide decisions pertaining to vaccination programmes for the best possible results. In the months following the introduction of vaccines, their availability and the human resources needed to run the vaccination programmes have been scarce in many countries. Vaccine hesitancy is also being encountered from some sections of the general public. We emphasize that decision-making under uncertainty and imperfect information, and with only conditionally optimal outcomes, is a unique forte of established game-theoretic modelling. Therefore, we can use this approach to obtain the best framework for modelling and simulating vaccination prioritization and uptake that will be readily available to inform important policy decisions for the optimal control of the COVID-19 pandemic.
The resurgence of measles is largely attributed to the decline in vaccine adoption and the increase in mobility. Although the vaccine for measles is readily available and highly successful, its current adoption is not adequate to prevent epidemics. V accine adoption is directly affected by individual vaccination decisions, and has a complex interplay with the spatial spread of disease shaped by an underlying mobility (travelling) network. In this paper, we model the travelling connectivity as a scale-free network, and investigate dependencies between the networks assortativity and the resultant epidemic and vaccination dynamics. In doing so we extend an SIR-network model with game-theoretic components, capturing the imitation dynamics under a voluntary vaccination scheme. Our results show a correlation between the epidemic dynamics and the networks assortativity, highlighting that networks with high assortativity tend to suppress epidemics under certain conditions. In highly assortative networks, the suppression is sustained producing an early convergence to equilibrium. In highly disassortative networks, however, the suppression effect diminishes over time due to scattering of non-vaccinating nodes, and frequent switching between the predominantly vaccinating and non-vaccinating phases of the dynamics.
We present a series of SIR-network models, extended with a game-theoretic treatment of imitation dynamics which result from regular population mobility across residential and work areas and the ensuing interactions. Each considered SIR-network model captures a class of vaccination behaviours influenced by epidemic characteristics, interaction topology, and imitation dynamics. Our focus is the eventual vaccination coverage, produced under voluntary vaccination schemes, in response to these varying factors. Using the next generation matrix method, we analytically derive and compare expressions for the basic reproduction number $R_0$ for the proposed SIR-network models. Furthermore, we simulate the epidemic dynamics over time for the considered models, and show that if individuals are sufficiently responsive towards the changes in the disease prevalence, then the more expansive travelling patterns encourage convergence to the endemic, mixed equilibria. On the contrary, if individuals are insensitive to changes in the disease prevalence, we find that they tend to remain unvaccinated in all the studied models. Our results concur with earlier studies in showing that residents from highly connected residential areas are more likely to get vaccinated. We also show that the existence of the individuals committed to receiving vaccination reduces $R_0$ and delays the disease prevalence, and thus is essential to containing epidemics.
We review research papers which use game theory to model the decision making of individuals during an epidemic, attempting to classify the literature and identify the emerging trends in this field. We show that the literature can be classified based on (i) type of population modelling (compartmental or network-based), (ii) frequency of the game (non-iterative or iterative), and (iii) type of strategy adoption (self-evaluation or imitation). We highlight that the choice of model depends on many factors such as the type of immunity the disease confers, the type of immunity the vaccine confers, and size of population and level of mixing therein. We show that while early studies used compartmental modelling with self-evaluation based strategy adoption, the recent trend is to use network-based modelling with imitation-based strategy adoption. Our review indicates that game theory continues to be an effective tool to model intervention (vaccination or social distancing) decision-making by individuals.
In this paper we present ACEMod, an agent-based modelling framework for studying influenza epidemics in Australia. The simulator is designed to analyse the spatiotemporal spread of contagion and influenza spatial synchrony across the nation. The indi vidual-based epidemiological model accounts for mobility (worker and student commuting) patterns and human interactions derived from the 2006 Australian census and other national data sources. The high-precision simulation comprises 19.8 million stochastically generated software agents and traces the dynamics of influenza viral infection and transmission at several scales. Using this approach, we are able to synthesise epidemics in Australia with varying outbreak locations and severity. For each scenario, we investigate the spatiotemporal profiles of these epidemics, both qualitatively and quantitatively, via incidence curves, prevalence choropleths, and epidemic synchrony. This analysis exemplifies the nature of influenza pandemics within Australia and facilitates future planning of effective intervention, mitigation and crisis management strategies.
Evolutionary game theory is used to model the evolution of competing strategies in a population of players. Evolutionary stability of a strategy is a dynamic equilibrium, in which any competing mutated strategy would be wiped out from a population. I f a strategy is weak evolutionarily stable, the competing strategy may manage to survive within the network. Understanding the network-related factors that affect the evolutionary stability of a strategy would be critical in making accurate predictions about the behaviour of a strategy in a real-world strategic decision making environment. In this work, we evaluate the effect of network topology on the evolutionary stability of a strategy. We focus on two well-known strategies known as the Zero-determinant strategy and the Pavlov strategy. Zero-determinant strategies have been shown to be evolutionarily unstable in a well-mixed population of players. We identify that the Zero-determinant strategy may survive, and may even dominate in a population of players connected through a non-homogeneous network. We introduce the concept of `topological stability to denote this phenomenon. We argue that not only the network topology, but also the evolutionary process applied and the initial distribution of strategies are critical in determining the evolutionary stability of strategies. Further, we observe that topological stability could affect other well-known strategies as well, such as the general cooperator strategy and the cooperator strategy. Our observations suggest that the variation of evolutionary stability due to topological stability of strategies may be more prevalent in the social context of strategic evolution, in comparison to the biological context.
In this paper, we explore the relationship between the topological characteristics of a complex network and its robustness to sustained targeted attacks. Using synthesised scale-free, small-world and random networks, we look at a number of network me asures, including assortativity, modularity, average path length, clustering coefficient, rich club profiles and scale-free exponent (where applicable) of a network, and how each of these influence the robustness of a network under targeted attacks. We use an established robustness coefficient to measure topological robustness, and consider sustained targeted attacks by order of node degree. With respect to scale-free networks, we show that assortativity, modularity and average path length have a positive correlation with network robustness, whereas clustering coefficient has a negative correlation. We did not find any correlation between scale-free exponent and robustness, or rich-club profiles and robustness. The robustness of small-world networks on the other hand, show substantial positive correlations with assortativity, modularity, clustering coefficient and average path length. In comparison, the robustness of Erdos-Renyi random networks did not have any significant correlation with any of the network properties considered. A significant observation is that high clustering decreases topological robustness in scale-free networks, yet it increases topological robustness in small-world networks. Our results highlight the importance of topological characteristics in influencing network robustness, and illustrate design strategies network designers can use to increase the robustness of scale-free and small-world networks under sustained targeted attacks.
A longitudinal social network evolves over time through the creation and/ or deletion of links among a set of actors (e.g. individuals or organizations). Longitudinal social networks are studied by network science and social science researchers to un derstand networke volution, trend propagation, friendship and belief formation, diffusion of innovation, the spread of deviant behavior and more. In the current literature, there are different approaches and methods (e.g. Sampsons approach and the markov model) to study the dynamics of longitudinal social networks. These approaches and methods have mainly been utilised to explore evolutionary changes of longitudinal social networks from one state to another and to explain the underlying reasons for these changes. However, they cannot quantify the level of dynamicity of the over time network changes and the contribution of individual network members (i.e. actors) to these changes. In this study, we first develop a set of measures to quantify different aspects of the dynamicity of a longitudinal social network. We then apply these measures, in order to conduct empirical investigations, to two different longitudinal social networks. Finally, we discuss the implications of the application of these measures and possible future research directions of this study.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا