ترغب بنشر مسار تعليمي؟ اضغط هنا

The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. In this paper we propose a new measure to describe spectra: the width of the $EF_E$ spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of GRBs observed by Fermi/GBM and CGRO/BATSE. The results from the two instruments are fully consistent. We find that the median widths of spectra from long and short GRBs are significantly different (chance probability $<10^{-6}$). The width does not correlate with either duration or hardness, and this is thus a new, independent distinction between the two classes. Comparing the measured spectra with widths of spectra from fundamental emission processes -- synchrotron and blackbody radiation -- the results indicate that a large fraction of GRB spectra are too narrow to be explained by synchrotron radiation from a distribution of electron energies: for example, 78% of long GRBs and 85% of short GRBs are incompatible with the minimum width of standard slow cooling synchrotron emission from a Maxwellian distribution of electrons, with fast cooling spectra predicting even wider spectra. Photospheric emission can explain the spectra if mechanisms are invoked to give a spectrum much broader than a blackbody.
We extract the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic during the rising phase of an outburst in the black-hole binary XTE J1550-564. We compare these frequency resolved spectra to the time-averaged spect rum and the spectrum of the rapid (<0.1s) variability. The spectrum of the time averaged emission can be described by a disc, a Compton upscattered tail, and its reflection. The QPO spectrum contains no detectable disc, and the Compton spectrum is generally harder than in the time averaged emission, and shows less reflection, making it very similar to the spectrum of the rapid variability. The harmonic likewise contains no detectable disc component, but has a Compton spectrum which is systematically softer than the QPO, softer even than the Compton tail in the time averaged emission. We interpret these results in the context of the Lense-Thirring model for the QPO, where a precessing hot flow replaces the inner disc, and the harmonic is produced by the angular dependence of Compton scattering within the hot flow. We extend these models to include stratification of the hot flow, so that it is softer (lower optical depth) at larger radii closer to the truncated disc, and harder (higher optical depth) in the innermost parts of the flow where the rapid variability is produced. The different optical depth with radius gives rise to different angular dependence of the Comptonised emission, weighting the fundamental to the inner parts of the hot flow, and the harmonic to the outer. This is the first model which can explain both the spectrum of the QPO and its harmonic in a self consistent geometry.
{it Fermi Gamma-ray Space Telescope} observations of GRB110721A have revealed two emission components from the relativistic jet: emission from the photosphere, peaking at $sim 100$ keV and a non-thermal component, which peaks at $sim 1000$ keV. We us e the photospheric component to calculate the properties of the relativistic outflow. We find a strong evolution in the flow properties: the Lorentz factor decreases with time during the bursts from $Gamma sim 1000$ to $sim 150$ (assuming a redshift $z=2$; the values are only weakly dependent on unknown efficiency parameters). Such a decrease is contrary to the expectations from the internal shocks and the isolated magnetar birth models. Moreover, the position of the flow nozzle measured from the central engine, $r_0$, increases by more than two orders of magnitude. Assuming a moderately magnetised outflow we estimate that $r_0$ varies from $10^6$ cm to $sim 10^9$ cm during the burst. We suggest that the maximal value reflects the size of the progenitor core. Finally, we show that these jet properties naturally explain the observed broken power-law decay of the temperature which has been reported as a characteristic for GRB pulses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا