ترغب بنشر مسار تعليمي؟ اضغط هنا

An imperfect double: probing the physical origin of the low-frequency QPO and its harmonic in black hole binaries

65   0   0.0 ( 0 )
 نشر من قبل Magnus Axelsson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extract the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic during the rising phase of an outburst in the black-hole binary XTE J1550-564. We compare these frequency resolved spectra to the time-averaged spectrum and the spectrum of the rapid (<0.1s) variability. The spectrum of the time averaged emission can be described by a disc, a Compton upscattered tail, and its reflection. The QPO spectrum contains no detectable disc, and the Compton spectrum is generally harder than in the time averaged emission, and shows less reflection, making it very similar to the spectrum of the rapid variability. The harmonic likewise contains no detectable disc component, but has a Compton spectrum which is systematically softer than the QPO, softer even than the Compton tail in the time averaged emission. We interpret these results in the context of the Lense-Thirring model for the QPO, where a precessing hot flow replaces the inner disc, and the harmonic is produced by the angular dependence of Compton scattering within the hot flow. We extend these models to include stratification of the hot flow, so that it is softer (lower optical depth) at larger radii closer to the truncated disc, and harder (higher optical depth) in the innermost parts of the flow where the rapid variability is produced. The different optical depth with radius gives rise to different angular dependence of the Comptonised emission, weighting the fundamental to the inner parts of the hot flow, and the harmonic to the outer. This is the first model which can explain both the spectrum of the QPO and its harmonic in a self consistent geometry.

قيم البحث

اقرأ أيضاً

40 - M. Axelsson , C. Done 2015
We use frequency-resolved spectroscopy to examine the energy spectra of the prominent low frequency QPO and its harmonic in GX 339-4. We track the evolution of these spectra as the source makes a transition from a bright low/hard to hard intermediate state. In the hard/intermediate states, the QPO and time averaged spectra are similar and the harmonic is either undetected or similar to the QPO. By contrast, in the softer states the harmonic is dramatically softer than the QPO spectrum and the time averaged spectrum, and the QPO spectrum is dramatically harder than the time averaged spectrum. Clearly, the existance of these very different spectral shaped components mean that the time-averaged spectra are complex. We use the frequency resolved spectra to better constrain the model components, and find that the data are consistent with a time-averaged spectrum which has an additional low temperature, optically thick Comptonisation component. The harmonic can be described by this additional component alone, while the QPO spectrum is similar to that of the hard Comptonisation and its reflection. Neither QPO nor harmonic show signs of the disc component even when it is strong in the time averaged spectrum. While the similarity between the harmonic and QPO spectra in the intermediate state can be produced from the angular dependence of Compton scattering in a single region, this cannot explain the dramatic differences seen in the soft state. Instead, we propose that the soft Compton region is located predominantly above the disc while the hard Compton is from the hotter inner flow. Our results therefore point to multiple possible mechanisms for producing harmonic features in the power spectrum. The dominant mechanism in a given observation is likely a function of both inclination angle and inner disc radius.
136 - Paolo Soleri 2007
We present the results of the timing analysis of five Rossi X-ray Timing Explorer observations of the Black Hole Candidate GRS 1915+105 between 1996 September and 1997 December. The aim was to investigate the possible presence of a type-B quasi-perio dic oscillation (QPO). Since in other systems this QPO is found to appear during spectral transitions from Hard to Soft states, we analyzed observations characterized by a fast and strong variability, in order to have a large number of transitions. In GRS 1915+105, transitions occur on very short time scales (~ sec): to single them out we averaged Power Density Spectra following the regular path covered by the source on a 3D Hardness-Hardness-Intensity Diagram. We identified both the type-C and the type-B quasi-periodic oscillations (QPOs): this is the first detection of a type-B QPO in GRS 1915+105. As the spectral transitions have been associated to the emission and collimation of relativistic radio-jets, their presence in the prototypical galactic jet source strengthens this connection.
We present the results of the analysis of a large database of X-ray observations of 22 galactic black-hole transients with the Rossi X-Ray timing explorer throughout its operative life for a total exposure time of ~12 Ms. We excluded persistent syste ms and the peculiar source GRS 1915+105, as well as the most recently discovered sources. The semi-automatic homogeneous analysis was aimed at the detection of high-frequency (100-1000 Hz) quasi-periodic oscillations (QPO), of which several cases were previously reported in the literature. After taking into account the number of independent trials, we obtained 11 detections from two sources only: XTE J1550-564 and GRO J1655-40. For the former, the detected frequencies are clustered around 180 Hz and 280 Hz, as previously found. For the latter, the previously-reported dichotomy 300-450 Hz is found to be less sharp. We discuss our results in comparison with kHz QPO in neutron-star X-ray binaries and the prospects for future timing X-ray missions.
We have examined a sample of 13 sub-Eddington supermassive black holes hosted by galaxies spanning a variety of morphological classifications to further understand the empirical fundamental plane of black hole activity. This plane describes black hol es from stellar-mass to supermassive and relates the mass of an accreting black hole and its radio and X-ray luminosities. A key factor in studying the fundamental plane is the turnover frequency, the frequency at which the radio continuum emission becomes optically thin. We measured this turnover frequency using new VLA observations combined, when necessary, with archival Chandra observations. Radio observations are in the range of 5--40 GHz across four frequency bands in B-configuration, giving high spatial resolution to focus on the core emission. We use Markov Chain Monte Carlo methods to fit the continuum emission in order to find the turnover frequency. After testing for correlations, the turnover frequency does not display a significant dependence on either mass or mass accretion rate, indicating that more complicated physics than simple scaling and optical depth effects are at play, as has been suggested by recent theoretical work.
335 - K. Sriram , A. R. Rao , C. S. Choi 2012
The evolution of different types of quasi-periodic oscillations (QPOs) and the coupled radiative/physical changes in the accretion disk are still poorly understood. In a few black hole binaries it was found that fast evolution of QPOs is associated w ith spectral variations. Such studies in other black hole binaries are important to understand the QPO phenomenon. For the black hole transient XTE J1817-330, we study fast QPO transitions and accompanying spectral variations to investigate what causes the spectral variation during the QPO transition. Roy et al. (2011) found QPOs in ten RXTE observations of XTE J1817-330. We found that, among the ten observations, only one observation shows erratic dips in its X-ray light curve. The power density spectra and the corresponding energy spectra were extracted and analyzed for the dip and non-dip sections of the light curve. We found that type-B $sim$6 Hz QPO changes into type-A QPO in a few tens of seconds along with a flux decrease. This transient evolution is accompanied with a significant spectral variation. We report a transient QPO feature and accompanying spectral variation in XTE J1817-330. Based on our findings, we discuss the origin of fast evolution of QPOs and spectral variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا