ﻻ يوجد ملخص باللغة العربية
{it Fermi Gamma-ray Space Telescope} observations of GRB110721A have revealed two emission components from the relativistic jet: emission from the photosphere, peaking at $sim 100$ keV and a non-thermal component, which peaks at $sim 1000$ keV. We use the photospheric component to calculate the properties of the relativistic outflow. We find a strong evolution in the flow properties: the Lorentz factor decreases with time during the bursts from $Gamma sim 1000$ to $sim 150$ (assuming a redshift $z=2$; the values are only weakly dependent on unknown efficiency parameters). Such a decrease is contrary to the expectations from the internal shocks and the isolated magnetar birth models. Moreover, the position of the flow nozzle measured from the central engine, $r_0$, increases by more than two orders of magnitude. Assuming a moderately magnetised outflow we estimate that $r_0$ varies from $10^6$ cm to $sim 10^9$ cm during the burst. We suggest that the maximal value reflects the size of the progenitor core. Finally, we show that these jet properties naturally explain the observed broken power-law decay of the temperature which has been reported as a characteristic for GRB pulses.
GRB110721A was observed by the Fermi Gamma-ray Space Telescope using its two instruments the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The burst consisted of one major emission episode which lasted for ~24.5 seconds (in the GB
New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This ra
We report on an optical photometric and polarimetric campaign on the accreting millisecond X-ray pulsar (AMXP) SAX J1808.4-3658 during its 2019 outburst. The emergence of a low-frequency excess in the spectral energy distribution in the form of a red
The quasi-thermal components found in many Fermi gamma-ray bursts (GRBs) imply that the photosphere emission indeed contributes to the prompt emission of many GRBs. But whether the observed spectra empirically fitted by the Band function or cutoff po
Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by accretion of matter onto super massive black holes. While the measured width profiles of such jets on large scales agree with theories of magnetic collimation