ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic fields in an accretion disk around the central black hole can modify the position of the innermost stable circular orbit (ISCO) radius and produces the difference for the classical Novikov-Thorne radius. We estimated the ISCO magnetic field strength on the base of polarimetric observations of the accretion disk radiation. This estimate can be obtained with taking into account the effect of Faraday rotation of the polarization plane at the length of the free path of photon between successive electron scattering events. In a result we presented the new method for real estimation of the ISCO radius in the accretion disk, i.e. in the nearest vicinity of a central black hole. Our estimations confirmed the V.P. Frolov, A.A. Shoom and C. Tzounis (2014) conclusion that magnetic field produces the effect in a result of which the innermost stable circular orbit becomes closer to the horizon of a black hole.
X-ray binary systems are very popular objects for astrophysical investigations. Compact objects in these systems are neutron stars, white dwarfs and black holes. Neutron stars and white dwarfs can have intrinsic magnetic fields. There is well known, famous theorem about absence of intrinsic magnetic fields of black holes. But magnetic field can exist in the accretion disk around a black hole. We present here the real estimates of the magnetic field strength at the radius of innermost stable orbit in an accretion disk of stellar mass black holes.
We present the review of some new problems in cosmology and physics of stars in connection with future launching of WSO. We discuss three problems. UV observations of distant z > 6 quasars allow to obtain information on the soft < 1 KeV X-ray radiati on of the accretion disk around a supermassive black hole because of its cosmological redshift. Really the region of X-ray radiation is insufficiently investigated because of high galactic absorption. In a result one will get important information on the reionization zone of the Universe. Astronomers from ESO revealed the effect of alignment of electric vectors of polarized QSOs. One of the probable mechanism of such alignment is the conversion of QSO radiation into low mass pseudoscalar particles (axions) in the extragalactic magnetic field. These boson like particles have been predicted by new SUSY particle physics theory. Since the probability of such conversion is increasing namely in UV spectral range one can expect the strong correlation between UV spectral energy distribution of QSO radiation and polarimetric data in the optical range. In the stellar physics one of the interesting problems is the origin of the X-ray sources with super Eddington luminosities. The results of UV observations of these X-ray sources will allow to find the origin of these sources as accreting intermediate mass black holes.
We suppose that linear optical polarization is due to multiple scattering in optically thick magnetized accretion disk around central black hole. The polarization degree is very sensitive to the spin of black hole - for Kerr rotating hole the polariz ation is higher than for Schwarzschild non-rotating one if both holes have the same luminosities and masses. The reason of this effect is that the radius of the first stable orbit for non-rotating hole is equal to three gravitational radiuses, and for fast rotating Kerr hole is approximately 6 times lesser. Magnetic field, decreasing from first stable orbits, is much larger in the region of escaping of optical radiation for the case of Schwarzschild hole than for Kerr one. Large magnetic field gives rise to large depolarization of radiation due to Faraday rotation effect. This explains the mentioned result. It seems that the ensemble of objects with observed polarization mostly consists of Kerr black holes.
We estimated the magnetic field strength at the horizon radius of black holes, that is derived by the magnetic coupling process and depended on the black hole mass $M_{BH}$ and the accretion rate $dot{M}$. Our estimation is based on the use of the fu ndamental variability plane for stellar mass black holes, AGNs and QSOs. The typical values of magnetic field strength on the black hole horizon are appeared at the level of $B_{BH}sim 10^8$G for stellar mass black holes and $B_{BH}sim 10^4$G for the supermassive black holes. We have obtained the relation $p_lsim u^{-1/2}_b$ between the intrinsic polarization of the accretion disk radiation and the characteristic frequency of the black hole X-ray variability.
We have developed the method that allows us to estimate the magnetic field strength at the horizon of a supermassive black hole (SMBH) through the observed polarization of optical emission of the accreting disk surrounding SMBH. The known asymptotic formulae for the Stokes parameters of outgoing radiation are azimuthal averaged, which corresponds to an observation of the disk as a whole. We consider two models of the embedding 3D-magnetic field, the regular field, and the regular field with an additional chaotic (turbulent) component. It is shown that the second model is preferable for estimating the magnetic field in NGC 4258. For estimations we used the standard accretion disk model assuming that the same power-law dependence of the magnetic field follows from the range of the optical emission down to the horizon. The observed optical polarization from NGC 4258 allowed us to find the values 10^3 - 10^4 Gauss at the horizon, depending on the particular choice of the model parameters. We also discuss the wavelength dependencies of the light polarization, and possibly applying them for a more realistic choice of accretion disk parameters.
We consider the integral light polarization from optically thick accretion disks. Basic mechanism is the multiple light scattering on free electrons (Milnes problem) in magnetized atmosphere. The Faraday rotation of the polarization plane changes bot h the value of integral polarization degree $p$ and the position angle $chi $. Besides, the characteristic spectra of these values appear. We are testing the known relation between magnetic field of black hole at the horizon $B_{BH}$ and its mass $M_{BH}$, and the usual power-law distribution inside the accretion disk. The formulae for $p(lambda)$ and $chi(lambda)$ depend on a number of parameters describing the particular dependence of magnetic field in accretion disk (the index of power-law distribution, the spin of the black hole, etc.). Comparison of our theoretical values of $p$ and $chi $ with observed polarization can help us to choice more realistic values of parameters if the accretion disk mechanism gives the main contribution to the observed integral polarization. The main content is connected with estimation of validity of the relation between $B_{BH}$ and $M_{BH}$. We found for the AGN NGC 4258 that such procedure does not confirm the mentioned correlation between magnetic field and mass of black hole.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا