ترغب بنشر مسار تعليمي؟ اضغط هنا

The Black Hole Mass and Magnetic Field Correlation in AGN: Testing by Optical Polarimetry

207   0   0.0 ( 0 )
 نشر من قبل Yuri Gnedin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the integral light polarization from optically thick accretion disks. Basic mechanism is the multiple light scattering on free electrons (Milnes problem) in magnetized atmosphere. The Faraday rotation of the polarization plane changes both the value of integral polarization degree $p$ and the position angle $chi $. Besides, the characteristic spectra of these values appear. We are testing the known relation between magnetic field of black hole at the horizon $B_{BH}$ and its mass $M_{BH}$, and the usual power-law distribution inside the accretion disk. The formulae for $p(lambda)$ and $chi(lambda)$ depend on a number of parameters describing the particular dependence of magnetic field in accretion disk (the index of power-law distribution, the spin of the black hole, etc.). Comparison of our theoretical values of $p$ and $chi $ with observed polarization can help us to choice more realistic values of parameters if the accretion disk mechanism gives the main contribution to the observed integral polarization. The main content is connected with estimation of validity of the relation between $B_{BH}$ and $M_{BH}$. We found for the AGN NGC 4258 that such procedure does not confirm the mentioned correlation between magnetic field and mass of black hole.



قيم البحث

اقرأ أيضاً

We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in AGN NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM/Newton, Suzaku and RXTE. We applied a scalin g technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO~J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6x10^5 solar masses.
We have developed the method that allows us to estimate the magnetic field strength at the horizon of a supermassive black hole (SMBH) through the observed polarization of optical emission of the accreting disk surrounding SMBH. The known asymptotic formulae for the Stokes parameters of outgoing radiation are azimuthal averaged, which corresponds to an observation of the disk as a whole. We consider two models of the embedding 3D-magnetic field, the regular field, and the regular field with an additional chaotic (turbulent) component. It is shown that the second model is preferable for estimating the magnetic field in NGC 4258. For estimations we used the standard accretion disk model assuming that the same power-law dependence of the magnetic field follows from the range of the optical emission down to the horizon. The observed optical polarization from NGC 4258 allowed us to find the values 10^3 - 10^4 Gauss at the horizon, depending on the particular choice of the model parameters. We also discuss the wavelength dependencies of the light polarization, and possibly applying them for a more realistic choice of accretion disk parameters.
60 - {DJ}. Savic 2018
The innermost regions in active galactic nuclei (AGNs) were not being spatially resolved so far but spectropolarimetry can provide us insight about their hidden physics and the geometry. From spectropolarimetric observations in broad emission lines a nd assuming equatorial scattering as a dominant polarization mechanism, it is possible to estimate the mass of supermassive black holes (SMBHs). We explore the possibilities and limits and to put constraints on the usage of the method for determining SMBH masses using polarization in broad emission lines by providing more in-depth theoretical modeling. Methods. We use the Monte Carlo radiative transfer code STOKES for exploring polarization of Type 1 AGNs. We model equatorial scattering using flared-disk geometry for a set of different SMBH masses assuming Thomson scattering. In addition to the Keplerian motion in the BLR, we also consider cases of additional radial inflows and vertical outflows. We model the profiles of polarization plane position angle, degree of polarization and total unpolarized line for different BLR geometries and different SMBH masses. Our modeling confirms that the method can be widely used for Type-1 AGNs when viewing inclinations are between 25 and 45 degrees. We show that the distance between the BLR and scattering region (SR) has a significant impact on the mass estimates and the best mass estimates are when the SR is situated at the distance 1.5-2.5 times larger than the outer BLR radius. Our models show that if Keplerian motion can be traced through the polarized line profile, then the direct estimation of the mass of the SMBH can be performed. When radial inflows or vertical outflows are present in the BLR, this method can be applied if velocities of the inflow/outflow are less than 500 km/s. We find that models for NGC4051, NGC4151, 3C273 and PG0844+349 are in good agreements with observations.
Recently, relations connecting the SMBH mass of central galaxies and global properties of the hosting cluster, such as temperature and mass, were observed. We investigate the correlation between SMBH mass and cluster mass and temperature, their estab lishment and evolution. We compare their scatter to that of the classical $M_{rm BH}-M_{rm BCG}$ relation. We study how gas accretion and BH-BH mergers contribute to SMBH growth across cosmic time. We employed 135 groups and clusters with a mass range $1.4times 10^{13}M_{odot}-2.5times 10^{15} M_{odot}$ extracted from a set of 29 zoom-in cosmological hydro-dynamical simulations where the baryonic physics is treated with various sub-grid models, including feedback by AGN. In our simulations we find that $M_{rm BH}$ correlates well with $M_{500}$ and $T_{500}$, with the scatter around these relations compatible within $2sigma$ with the scatter around $M_{rm BH}-M_{rm BCG}$ at $z=0$. The $M_{rm BH}-M_{500}$ relation evolves with time, becoming shallower at lower redshift as a direct consequence of hierarchical structure formation. On average, in our simulations the contribution of gas accretion to the total SMBH mass dominates for the majority of the cosmic time ($z>0.4$), while in the last 2 Gyr the BH-BH mergers become a larger contributor. During this last process, substructures hosting SMBHs are disrupted in the merger process with the BCG and the unbound stars enrich the diffuse stellar component rather than increase BCG mass. From the results obtained in our simulations with simple sub-grid models we conclude that the scatter around the $M_{rm BH}-T_{500}$ relation is comparable to the scatter around the $M_{rm BH}-M_{rm BCG}$ relation and that, given the observational difficulties related to the estimation of the BCG mass, clusters temperature and mass can be a useful proxy for the SMBHs mass, especially at high redshift.
We present the results of the analysis of a sample of 17 low-luminosity (L_x < 1e42 erg/s), radio loud AGNs in massive galaxies. The sample is extracted from the SDSS database and it spans uniformly a wide range in optical [OIII] emission line and ra dio luminosity, but within a narrow redshift range (0.05 < z < 0.11) and a narrow super massive black hole mass range (~ 1e8 M_sun). For these sources we measured core X-ray emission with the Chandra X-ray telescope and radio emission with the VLA. Our main goal is to establish which emission component, if any, can be regarded as the most reliable accretion/jet-power estimator at these regimes. In order to do so, we studied the correlation between emission line properties, radio luminosity, radio spectral slopes and X-ray luminosity, as well as more complex multi-variate relations involving black hole mass, such as the fundamental plane of black hole activity. We find that 15 out of 17 sources of our sample can be classified as Low-Excitation Galaxies (LEG) and their observed properties suggest X-ray and radio emission to originate from the jet basis. We also find that X-ray emission does not appear to be affected by nuclear obscuration and can be used as a reliable jet-power estimator. More generally, X-ray, radio and optical emission appear to be related, although no tight correlation is found. In accordance with a number of recent studies of this class of objects these findings may be explained by a lack of cold (molecular) gaseous structures in the innermost region of these massive galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا