ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field and radius of innermost stable circular orbit near SMBH in AGNs

143   0   0.0 ( 0 )
 نشر من قبل Yuri Gnedin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields in an accretion disk around the central black hole can modify the position of the innermost stable circular orbit (ISCO) radius and produces the difference for the classical Novikov-Thorne radius. We estimated the ISCO magnetic field strength on the base of polarimetric observations of the accretion disk radiation. This estimate can be obtained with taking into account the effect of Faraday rotation of the polarization plane at the length of the free path of photon between successive electron scattering events. In a result we presented the new method for real estimation of the ISCO radius in the accretion disk, i.e. in the nearest vicinity of a central black hole. Our estimations confirmed the V.P. Frolov, A.A. Shoom and C. Tzounis (2014) conclusion that magnetic field produces the effect in a result of which the innermost stable circular orbit becomes closer to the horizon of a black hole.



قيم البحث

اقرأ أيضاً

We consider the escape probability of a photon emitted from the innermost stable circular orbit (ISCO) of a rapidly rotating black hole. As an isotropically emitting light source on a circular orbit reduces its orbital radius, the escape probability of a photon emitted from it decreases monotonically. The escape probability evaluated at the ISCO also decreases monotonically as the black hole spin increases. When the dimensionless Kerr parameter $a$ is at the Thorne limit $a=0.998$, the escape probability from the ISCO is $58.8%$. In the extremal case $a=1$, even if the orbital radius of the light source is arbitrarily close to the ISCO radius, which coincides with the horizon radius, the escape probability remains at $54.6%$. We also show that such photons that have escaped from the vicinity of the horizon reach infinity with sufficient energy to be potentially observed because Doppler blueshift due to relativistic beaming can overcome the gravitational redshift. Our findings indicate that signs of the near-horizon physics of a rapidly rotating black hole will be detectable on the edge of its shadow.
We present a promising new technique, the g-distribution method, for measuring the inclination angle (i), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g-distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy relative to the g-distribution shifts predicted from microlensing caustic calculations. We apply the method to the gravitationally lensed quasars RX J1131-1231 (z_s=0.658, z_l=0.295), QJ 0158-4325 (z_s=1.294, z_l=0.317), and SDSS 1004+4112 (z_s=1.734, z_l=0.68). For RX J1131-1231 our initial results indicate that r_ISCO<8.5 gravitational radii (r_g) and i > 76 degrees. We detect two shifted Fe lines, in several observations, as predicted in our numerical simulations of caustic crossings. The current DeltaE-distribution of RX J1131-1231 is sparsely sampled but further X-ray monitoring of RX J1131-1231 and other lensed quasars will provide improved constraints on the inclination angles, ISCO radii and spins of the black holes of distant quasars.
The accreting black-hole binary XTE J1752--223 was observed in a stable hard state for 25 d by RXTE, yielding a 3--140 keV spectrum of unprecedented statistical quality. Its published model required a single Comptonization spectrum reflecting from a disk close to the innermost stable circular orbit. We studied that model as well as a number of other single-Comptonization models (yielding similarly low inner radii), but found they violate a number of basic physical constraints, e.g., their compactness is much above the maximum allowed by pair equilibrium. We also studied the contemporaneous 0.55--6 keV spectrum from the Swift/XRT and found it well fitted by an absorbed power law and a disk blackbody with the innermost temperature of 0.1 keV. The normalization of the disk blackbody corresponds to an inner radius of $gtrsim$20 gravitational radii and its temperature, to irradiation of the truncated disk by a hot inner flow. We have also developed a Comptonization/reflection model including the disk irradiation and intrinsic dissipation, but found that it does not yield any satisfactory fits. On the other hand, we found that the $leq$10 keV band from RXTE is much better fitted by a reflection from a disk with the inner radius $gtrsim$100 gravitational radii, which model then underpredicts the spectrum at $>$10 keV by $<$10%. We argue that the most plausible explanation of the above results is inhomogeneity of the source, with the local spectra hardening with the decreasing radius. Our results support the presence of a complex Comptonization region and a large disk truncation radius in this source.
We compute the radiation emitted by a particle on the innermost stable circular orbit of a rapidly spinning black hole both (a) analytically, working to leading order in the deviation from extremality and (b) numerically, with a new high-precision Te ukolsky code. We find excellent agreement between the two methods. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight, a quantity that arises naturally in the representation theory of the enhanced near-horizon symmetry group. We find relationships to previous work on particles orbiting in precisely extreme Kerr, including detailed agreement of quantities computed here with conformal field theory calculations performed in the context of the Kerr/CFT correspondence.
We investigate the positions of stable circular massive particle orbits in the Majumdar--Papapetrou dihole spacetime with equal mass. In terms of qualitative differences of their sequences, we classify the dihole separation into five ranges and find four critical values as the boundaries. When the separation is relatively large, the sequence on the symmetric plane bifurcates, and furthermore, they extend to each innermost stable circular orbit in the vicinity of each black hole. In a certain separation range, the sequence on the symmetric plane separates into two parts. On the basis of this phenomenon, we discuss the formation of double accretion disks with a common center. Finally, we clarify the dependence of the radii of marginally stable circular orbits and innermost stable circular orbits on the separation parameter. We find a discontinuous transition of the innermost stable circular orbit radius. We also find the separation range at which the radius of the innermost stable circular orbit can be smaller than that of the stable circular photon orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا