ترغب بنشر مسار تعليمي؟ اضغط هنا

High power single mode quantum cascade lasers with a narrow far field are important for several applications including surgery or military countermeasure. Existing technologies suffer from drawbacks such as operation temperature and scalability. In t his paper we introduce a fabrication approach that potentially solves simultaneously these remaining limitations. We demonstrate and characterize deep etched, buried photonic crystal quantum cascade lasers emitting around a wavelength of 8.5 {mu}m. The active region was dry etched before being regrown with semi-insulating Fe:InP. This fabrication strategy results in a refractive index contrast of 10% allowing good photonic mode control, and simultaneously provides good thermal extraction during operation. Single mode emission with narrow far field pattern and peak powers up to 0.88 W at 263 K were recorded from the facet of the photonic crystal laser, and lasing operation was maintained up to room temperature. The lasing modes emitted from square photonic crystal mesas with a side length of 550{mu}m, were identified as slow Bloch photonic crystal modes by means of three-dimensional photonic simulations and measurements.
59 - P. Zasche , M. Wolf , J. Vrastil 2014
Aims: The Danish 1.54-meter telescope at the La Silla observatory was used for photometric monitoring of selected eccentric eclipsing binaries located in the Small Magellanic Cloud. The new times of minima were derived for these systems, which are ne eded for accurate determination of the apsidal motion. Moreover, many new times of minima were derived from the photometric databases OGLE and MACHO. Eighteen early-type eccentric-orbit eclipsing binaries were studied. Methods: Their (O-C) diagrams of minima timings were analysed and the parameters of the apsidal motion were obtained. The light curves of these eighteen binaries were analysed using the program PHOEBE, giving the light curve parameters. For several systems the additional third light also was detected. Results: We derived for the first time and significantly improved the relatively short periods of apsidal motion from 19 to 142 years for these systems. The relativistic effects are weak, up to 10% of the total apsidal motion rate. For one system (OGLE-SMC-ECL-0888), the third-body hypothesis was also presented, which agrees with high value of the third light for this system detected during the light curve solution.
Sinkhorn proved that every entry-wise positive matrix can be made doubly stochastic by multiplying with two diagonal matrices. In this note we prove a recently conjectured analogue for unitary matrices: every unitary can be decomposed into two diagon al unitaries and one whose row- and column sums are equal to one. The proof is non-constructive and based on a reformulation in terms of symplectic topology. As a corollary, we obtain a decomposition of unitary matrices into an interlaced product of unitary diagonal matrices and discrete Fourier transformations. This provides a new decomposition of linear optics arrays into phase shifters and canonical multiports described by Fourier transformations.
349 - M. Wolf , J. Berezovsky 2014
We perform photoluminescence excitation measurements on individual CdSe/ZnS nanocrystal quantum dots (NCQDs) at room temperature to study optical transition energies and broadening. The observed features in the spectra are identified and compared to calculated transition energies using an effective mass model. The observed broadening is attributed to phonon broadening, spectral diffusion and size and shape inhomogeneity. The former two contribute the broadening transitions in individual QDs while the latter contributes to the QD-to-QD variation. We find that phonon broadening is often not the dominant contribution to transition line widths, even at room temperature, and that broadening does not necessarily increase with transition energy. This may be explained by differing magnitude of spectral diffusion for different quantum-confined states.
We provide a detailed analysis of the question: how many measurement settings or outcomes are needed in order to identify a quantum system which is constrained by prior information? We show that if the prior information restricts the system to a set of lower dimensionality, then topological obstructions can increase the required number of outcomes by a factor of two over the number of real parameters needed to characterize the system. Conversely, we show that almost every measurement becomes informationally complete with respect to the constrained set if the number of outcomes exceeds twice the Minkowski dimension of the set. We apply the obtained results to determine the minimal number of outcomes of measurements which are informationally complete with respect to states with rank constraints. In particular, we show that 4d-4 measurement outcomes (POVM elements) is enough in order to identify all pure states in a d-dimensional Hilbert space, and that the minimal number is at most 2 log_2(d) smaller than this upper bound.
For the past three decades, and until recently, there has been a serious discrepancy between the observed and theoretical values of the apsidal motion rate dw/dt of the eccentric eclipsing binary DI Her, which has even been interpreted occasionally a s a possible failure of General Relativity (GR). Recent observations of the Rossiter-McLaughlin effect have shown convincingly that the reason for the anomaly is that the rotational axes of the stars and the orbital axis are misaligned, which changes the predicted rate of precession significantly. Although as a result of those measurements the disagreement is now drastically smaller, it remains formally at the level of 50%, possibly due to errors in the measured apsidal motion rate, outdated stellar models, or inaccuracies in the stellar parameters. Here we address each of these issues in order to improve the agreement further. New times of minimum have been collected in order to redetermine the apsidal motion rate. We have computed new stellar evolution models with updated physical inputs, and derived improved apsidal motion constants for the components. We have performed Monte Carlo simulations to infer the theoretical distribution of dw/dt, including the contributions from GR as well as tidal and rotational distortions. All observational errors have been accounted for. Our simulations yield a retrograde apsidal motion rate due to the rotationally-induced oblateness of -0.00056 deg/cycle (mode of the distribution), a GR contribution of +0.00068 deg/cycle, and a tidal contribution of +0.00034 deg/cycle, leading to a total predicted rate of +0.00046 deg/cycle. This is in excellent agreement with the newly measured value of +0.00042 deg/cycle. The formal difference is now reduced to 10%, a small fraction of the observational uncertainties. (abridged)
In this paper, Wielandts inequality for classical channels is extended to quantum channels. That is, an upper bound to the number of times a channel must be applied, so that it maps any density operator to one with full rank, is found. Using this bou nd, dichotomy theorems for the zero--error capacity of quantum channels and for the Matrix Product State (MPS) dimension of ground states of frustration-free Hamiltonians are derived. The obtained inequalities also imply new bounds on the required interaction-range of Hamiltonians with unique MPS ground state.
Strong pinning of superconducting flux quanta by a square array of 1 $mu$m-sized ferromagnetic dots in a magnetic-vortex state was visualized by low-temperature magnetic force microscopy (LT-MFM). A direct correlation of the superconducting flux line s with the positions of the dots was derived. The force that the MFM tip exerts on the individual vortex in the depinning process was used to estimate the spatial modulation of the pinning potential. It was found, that the superconducting vortices which are preferably located on top of the Py dots experience about 15 times stronger pinning forces as compared to the pinning force in the pure Nb film. The strong pinning exceeds the repulsive interaction between the superconducting vortices and allows the vortex clusters to be located at each dot. Our microscopic studies are consistent with global magnetoresistace measurements on these hybrid structures.
It is well known that jointly measurable observables cannot lead to a violation of any Bell inequality - independent of the state and the measurements chosen at the other site. In this letter we prove the converse: every pair of incompatible quantum observables enables the violation of a Bell inequality and therefore must remain incompatible within any other no-signaling theory. While in the case of von Neumann measurements it is sufficient to use the same pair of observables at both sites, general measurements can require different choices. The main result is obtained by showing that for arbitrary dimension the CHSH inequality provides the Lagrangian dual of the characterization of joint measurability. This leads to a simple criterion for joint measurability beyond the known qubit case.
We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We expl oit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)--invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا