ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a method, based on Bayesian statistics, to fit the dust emission parameters in the far-infrared and submillimeter wavelengths. The method estimates the dust temperature and spectral emissivity index, plus their relationship, taking into ac count properly the statistical and systematic uncertainties. We test it on three sets of simulated sources detectable by the Herschel Space Observatory in the PACS and SPIRE spectral bands (70-500 micron), spanning over a wide range of dust temperatures. The simulated observations are a one-component Interstellar Medium, and two two-component sources, both warm (HII regions) and cold (cold clumps). We first define a procedure to identify the better model, then we recover the parameters of the model and measure their physical correlations by means of a Monte Carlo Markov Chain algorithm adopting multi-variate Gaussian priors. In this process we assess the reliability of the model recovery, and of parameters estimation. We conclude that the model and parameters are properly recovered only under certain circumstances, and that false models may be derived in some case. We applied the method to a set of 91 starless cold clumps in an inter-arm region of the Galactic Plane with low star formation activity, observed by Herschel in the Hi-GAL survey. Our results are consistent with a temperature independent spectral index.
The Herschel survey of the Galactic Plane (Hi-GAL) provides a unique opportunity to study star formation over large areas of the sky and different environments in the Milky Way. We use the best studied Hi-GAL fields to date, two 2x2 tiles centered on (l, b) = (30, 0) deg and (l, b) = (59, 0) deg, to study the star formation activity using a large sample of well selected young stellar objects (YSOs). We estimate the star formation rate (SFR) for these fields using the number of candidate YSOs and their average time scale to reach the Zero Age Main Sequence, and compare it with the rate estimated using their integrated luminosity at 70 micron combined with an extragalactic star formation indicator. We measure a SFR of (9.5 +- 4.3)*10^{-4} Msol/yr and (1.6 +- 0.7)*10^{-4} Msol/yr with the source counting method, in l=30 deg and l=59 deg, respectively. Results with the 70 micron estimator are (2.4 +- 0.4)*10^{-4} Msol/yr and (2.6 +- 1.1)*10^{-6} Msol/yr. Since the 70 micron indicator is derived from averaging extragalactic star forming complexes, we perform an extrapolation of these values to the whole Milky Way and obtain SFR_{MW} = (0.71 +- 0.13) Msol/yr from l = 30 deg and SFR_{MW} = (0.10 +- 0.04) Msol/yr from l=59 deg. The estimates in l=30 deg are in agreement with the most recent results on the Galactic star formation activity, indicating that the characteristics of this field are likely close to those of the star-formation dominated galaxies used for its derivation. Since the sky coverage is limited, this analysis will improve when the full Hi-GAL survey will be available.
We have analyzed a uniform sample of 16 evolved HII regions located in a 2 deg X 2 deg Galactic field centered at (l,b) = (30 deg, 0 deg) and observed as part of the Herschel Hi-GAL survey. The evolutionary stage of these HII regions was established using ancillary radio continuum data. By combining Hi-GAL PACS (70 micron, 160 micron) and SPIRE (250 micron, 350 micron and 500 micron) measurements with MIPSGAL 24 micron data, we built Spectral Energy Distributions (SEDs) of the sources and showed that a 2-component grey-body model is a good representation of the data. In particular, wavelengths > 70 micron appear to trace a cold dust component, for which we estimated an equilibrium temperature of the Big Grains (BGs) in the range 20 - 30 K, while for lambda < 70 micron, the data indicated the presence of a warm dust component at temperatures of the order of 50 - 90 K. This analysis also revealed that dust is present in the interior of HII regions, although likely not in a large amount. In addition, the data appear to corroborate the hypothesis that the main mechanism responsible for the (partial) depletion of dust in HII regions is radiation-pressure-driven drift. In this framework, we speculated that the 24 micron emission which spatially correlates with ionized gas might be associated with either Very Small Grain (VSG) or BG replenishment, as recently proposed for the case of Wind-Blown Bubbles (WBB). Finally, we found that evolved HII regions are characterized by distinctive far-IR and sub-mm colors, which can be used as diagnostics for their identification in unresolved Galactic and extragalactic regions.
We present the data reduction pipeline for the Hi-GAL survey. Hi-GAL is a key project of the Herschel satellite which is mapping the inner part of the Galactic plane (|l| <= 70cdot and |b| <= 1cdot), using 2 PACS and 3 SPIRE frequency bands, from 70{ mu}m to 500{mu}m. Our pipeline relies only partially on the Herschel Interactive Standard Environment (HIPE) and features several newly developed routines to perform data reduction, including accurate data culling, noise estimation and minimum variance map-making, the latter performed with the ROMAGAL algorithm, a deep modification of the ROMA code already tested on cosmological surveys. We discuss in depth the properties of the Hi-GAL Science Demonstration Phase (SDP) data.
We study the Spectral Energy Distribution (SED) and the power spectrum of Galactic cirrus emission observed in the 14 deg^2 Science Demonstration Phase field of the Herschel-ATLAS using Herschel and IRAS data from 100 to 500 um. We compare the SPIRE 250, 350 and 500um maps with IRAS 100um emission, binned in 6 pixels. We assume a modified black-body SED with dust emissivity parameter beta (F ~ lambda^(-beta)) and a single dust temperature T_d, and find that the dust temperature and emissivity index varies over the science demonstration field as 10< T_rm < 25 K and 1 < beta< 4. The latter values are somewhat higher than the range of beta often quoted in the literature (1< beta< 2). We estimate the mean values of these parameters to be T_d=19.0 +/- 2.4 K and beta = 1.4 +/- 0.4. In regions of bright cirrus emission, we find that the dust has similar temperatures with T_d = 18.0 +/- 2.5 K, and similar values of beta, ranging from 1.4 +- 0.5 to 1.9+/- 0.5. We show that T_d and beta associated with diffuse cirrus emission are anti-correlated and can be described by the relationship: beta(T_d) = NT_d^alpha with [N=116+/-38, alpha=-1.4+/1 0.1]. The strong correlation found in this analysis is not just limited to high density clumps of cirrus emission as seen in previous studies, but is also seen in diffuse cirrus in low density regions. To provide an independent measure of $T_{rm d}$ and $beta$, we obtain the angular power spectrum of the cirrus emission in the {it IRAS} and SPIRE maps, which is consistent with a power spectrum of the form P(k)=P_0(k/k_0)^gamma where gamma = ^a H R2.6+/-m 0.2 for scales of 50-200 in the SPIRE maps. The cirrus rms fluctuation amplitude at angular scales of 100 is consistent with a modified blackbody SED with T_d = 20.1+/- 0.9 K and beta = 1.3+/- 0.2, in agreement with the values obtained above.
Variations in the dust emissivity are critical for gas mass determinations derived from far-infrared observations, but also for separating dust foreground emission from the Cosmic Microwave Background (CMB). Hi-GAL observations allow us for the first time to study the dust emissivity variations in the inner regions of the Galactic plane at resolution below 1 degree. We present maps of the emissivity spectral index derived from the combined Herschel PACS 160 mu m, SPIRE 250 mu m, 350 mu m, and 500 mu m data, and the IRIS 100 mu m data, and we analyze the spatial variations of the spectral index as a function of dust temperature and wavelength in the two Science Demonstration Phase Hi-GAL fields, centered at l=30{deg} and l=59{deg}. Applying two different methods, we determine both dust temperature and emissivity spectral index between 100 and 500 mu m, at an angular resolution of 4. Combining both fields, the results show variations of the emissivity spectral index in the range 1.8-2.6 for temperatures between 14 and 23 K. The median values of the spectral index are similar in both fields, i.e. 2.3 in the range 100-500 mu m, while the median dust temperatures are equal to 19.1 K and 16.0 K in the l=30{deg} and l=59{deg} field, respectively. Statistically, we do not see any significant deviations in the spectra from a power law emissivity between 100 and 500 mu m. We confirm the existence of an inverse correlation between the emissivity spectral index and dust temperature, found in previous analyses.
We constrain the amplitude of primordial non-Gaussianity in the CMB data taking into account the presence of foreground residuals in the maps. We generalise the needlet bispectrum estimator marginalizing over the amplitudes of thermal dust, free-free and synchrotron templates. We apply our procedure to WMAP 5 year data, finding fNL= 38pm 47 (1 sigma), while the analysis without marginalization provides fNL= 35pm 42. Splitting the marginalization over each foreground separately, we found that the estimates of fNL are positively cross correlated of 17%, 12% with the dust and synchrotron respectively, while a negative cross correlation of about -10% is found for the free-free component.
The physical properties of galactic cirrus emission are not well characterized. BOOMERanG is a balloon-borne experiment designed to study the cosmic microwave background at high angular resolution in the millimeter range. The BOOMERanG 245 and 345GHz channels are sensitive to interstellar signals, in a spectral range intermediate between FIR and microwave frequencies. We look for physical characteristics of cirrus structures in a region at high galactic latitudes (b~-40{deg}) where BOOMERanG performed its deepest integration, combining the BOOMERanG data with other available datasets at different wavelengths. We have detected eight emission patches in the 345 GHz map, consistent with cirrus dust in the Infrared Astronomical Satellite maps. The analysis technique we have developed allows to identify the location and the shape of cirrus clouds, and to extract the flux from observations with different instruments at different wavelengths and angular resolutions. We study the integrated flux emitted from these cirrus clouds using data from Infrared Astronomical Satellite (IRAS), DIRBE, BOOMERanG and Wilkinson Microwave Anisotropy Probe (WMAP) in the frequency range 23-3000 GHz (13 mm 100 micron wavelength). We fit the measured spectral energy distributions with a combination of a grey body and a power-law spectra considering two models for the thermal emission. The temperature of the thermal dust component varies in the 7 - 20 K range and its emissivity spectral index is in the 1 - 5 range. We identified a physical relation between temperature and spectral index as had been proposed in previous works. This technique can be proficiently used for the forthcoming Planck and Herschel missions data.
The Sunyaev-Zeldovich (SZ) effect is the inverse Compton-scattering of cosmic microwave background (CMB) photons by hot electrons in the intervening gas throughout the universe. The effect has a distinct spectral signature that allows its separation from other signals in multifrequency CMB datasets. Using CMB anisotropies measured at three frequencies by the BOOMERanG 2003 flight we constrain SZ fluctuations in the 10 arcmin to 1 deg angular range. Propagating errors and potential systematic effects through simulations, we obtain an overall upper limit of 15.3 uK (2 sigma) for rms SZ fluctuations in a broad bin between multipoles of of 250 and 1200 at the Rayleigh-Jeans (RJ) end of the spectrum. When combined with other CMB anisotropy and SZ measurements, we find that the local universe normalization of the density perturbations is sigma-8(SZ) < 0.96 at the 95% confidence level, consistent with sigma-8 determined from primordial perturbations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا