ﻻ يوجد ملخص باللغة العربية
The Sunyaev-Zeldovich (SZ) effect is the inverse Compton-scattering of cosmic microwave background (CMB) photons by hot electrons in the intervening gas throughout the universe. The effect has a distinct spectral signature that allows its separation from other signals in multifrequency CMB datasets. Using CMB anisotropies measured at three frequencies by the BOOMERanG 2003 flight we constrain SZ fluctuations in the 10 arcmin to 1 deg angular range. Propagating errors and potential systematic effects through simulations, we obtain an overall upper limit of 15.3 uK (2 sigma) for rms SZ fluctuations in a broad bin between multipoles of of 250 and 1200 at the Rayleigh-Jeans (RJ) end of the spectrum. When combined with other CMB anisotropy and SZ measurements, we find that the local universe normalization of the density perturbations is sigma-8(SZ) < 0.96 at the 95% confidence level, consistent with sigma-8 determined from primordial perturbations.
The pairwise kinematic Sunyaev-Zeldovich (kSZ) signal from galaxy clusters is a probe of their line-of-sight momenta, and thus a potentially valuable source of cosmological information. In addition to the momenta, the amplitude of the measured signal
The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Plancks wide angular scale and frequency coverage, together with its high sensitivity, allow a detailed study of this
Several analytic and numerical studies have indicated that the interstellar medium of a quasar host galaxy heated by feedback can contribute to a substantial secondary signal in the cosmic microwave background (CMB) through the thermal Sunyaev-Zeldov
We report our analysis of MACS J0717.5+3745 using 140 and 268 GHz Bolocam data collected at the Caltech Submillimeter Observatory. We detect extended Sunyaev-Zeldovich (SZ) effect signal at high significance in both Bolocam bands, and we employ Hersc
Most Sunyaev--Zeldovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass and/or gas mass using parameterised models and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the prob