ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the effect of the Berry phase on quadrupoles that occur for example in the low-energy description of spin models. Specifically we study here the one-dimensional bilinear-biquadratic spin-one model. An open question for many years about this model is whether it has a non-dimerized fluctuating nematic phase. The dimerization has recently been proposed to be related to Berry phases of the quantum fluctuations. We use an effective low-energy description to calculate the scaling of the dimerization according to this theory, and then verify the predictions using large scale density-matrix renormalization group (DMRG) simulations, giving good evidence that the state is dimerized all the way up to its transition into the ferromagnetic phase. We furthermore discuss the multiplet structure found in the entanglement spectrum of the ground state wave functions.
Recently, it has been proposed that exotic one-dimensional phases can be realized by gapping out the edge states of a fractional topological insulator. The low-energy edge degrees of freedom are described by a chain of coupled parafermions. We introd uce a classification scheme for the phases that can occur in parafermionic chains. We find that the parafermions support both topological symmetry fractionalized phases as well as phases in which the parafermions condense. In the presence of additional symmetries, the phases form a non-Abelian group. As a concrete example of the classification, we consider the effective edge model for a $ u= 1/3$ fractional topological insulator for which we calculate the entanglement spectra numerically and show that all possible predicted phases can be realized.
The theory of topological insulators and superconductors has mostly focused on non-interacting and gapped systems. This review article discusses topological phases that are either gapless or interacting. We discuss recent progress in identifying gapl ess systems with stable topological properties (such as novel surface states), using Weyl semimetals as an illustration. We then review recent progress in describing topological phases of interacting gapped systems. We explain how new types of edge states can be stabilized by interactions and symmetry, even though the bulk has only conventional excitations and no topological order of the kind associated with Fractional Quantum Hall states.
Band insulators appear in a crystalline system only when the filling -- the number of electrons per unit cell and spin projection -- is an integer. At fractional filling, an insulating phase that preserves all symmetries is a Mott insulator, i.e. it is either gapless or, if gapped, displays fractionalized excitations and topological order. We raise the inverse question -- at an integer filling is a band insulator always possible? Here we show that lattice symmetries may forbid a band insulator even at certain integer fillings, if the crystal is non-symmorphic -- a property shared by a majority of three-dimensional crystal structures. In these cases, one may infer the existence of topological order if the ground state is gapped and fully symmetric. This is demonstrated using a non-perturbative flux threading argument, which has immediate applications to quantum spin systems and bosonic insulators in addition to electronic band structures in the absence of spin-orbit interactions.
Within the Landau paradigm, phases of matter are distinguished by spontaneous symmetry breaking. Implicit here is the assumption that a completely symmetric state exists: a paramagnet. At zero temperature such quantum featureless insulators may be fo rbidden, triggering either conventional order or topological order with fractionalized excitations. Such is the case for interacting particles when the particle number per unit cell, f, is not an integer. But, can lattice symmetries forbid featureless insulators even at integer f? An especially relevant case is the honeycomb (graphene) lattice --- where free spinless fermions at f=1 (the two sites per unit cell mean f=1 is half filling per site) are always metallic. Here we present wave functions for bosons, and a related spin-singlet wave function for spinful electrons, on the f=1 honeycomb, and demonstrate via quantum to classical mappings that they do form featureless Mott insulators. The construction generalizes to symmorphic lattices at integer f in any dimension. Our results explicitly demonstrate that in this case, despite the absence of a non-interacting insulator at the same filling, lack of order at zero temperature does not imply fractionalization.
We study Bose-Hubbard models on tight-binding, non-Bravais lattices, with a filling of one boson per unit cell -- and thus fractional site filling. At integer filling of a unit cell neither symmetry breaking nor topological order is required, and in principle a trivial and featureless (i.e., symmetry-unbroken) insulator is allowed. We demonstrate by explicit construction of a family of wavefunctions that such a featureless Mott insulating state exists at 1/3 filling on the kagome lattice, and construct Hamiltonians for which these wavefunctions are exact ground states. We briefly comment on the experimental relevance of our results to cold atoms in optical lattices. Such wavefunctions also yield 1/3 magnetization plateau states for spin models in an applied field. The featureless Mott states we discuss can be generalized to any lattice for which symmetric exponentially localized Wannier orbitals can be found at the requisite filling, and their wavefunction is given by the permanent over all Wannier orbitals.
We study three dimensional insulators with inversion symmetry, in which other point group symmetries, such as time reversal, are generically absent. Their band topology is found to be classified by the parities of occupied states at time reversal inv ariant momenta (TRIM parities), and by three Chern numbers. The TRIM parities of any insulator must satisfy a constraint: their product must be +1. The TRIM parities also constrain the Chern numbers modulo two. When the Chern numbers vanish, a magneto-electric response parameterized by theta is defined and is quantized to theta= 0, 2pi. Its value is entirely determined by the TRIM parities. These results may be useful in the search for magnetic topological insulators with large theta. A classification of inversion symmetric insulators is also given for general dimensions. An alternate geometrical derivation of our results is obtained by using the entanglement spectrum of the ground state wave-function.
How do we uniquely identify a quantum phase, given its ground state wave-function? This is a key question for many body theory especially when we consider phases like topological insulators, that share the same symmetry but differ at the level of top ology. The entanglement spectrum has been proposed as a ground state property that captures characteristic edge excitations. Here we study the entanglement spectrum for topological band insulators. We first show that insulators with topological surface states will necessarily also have protected modes in the entanglement spectrum. Surprisingly, however, the converse is not true. Protected entanglement modes can also appear for insulators without physical surface states, in which case they capture a more elusive property. This is illustrated by considering insulators with only inversion symmetry. Inversion is shown to act in an unusual way, as an antiunitary operator, on the entanglement spectrum, leading to this protection. The entanglement degeneracies indicate a variety of different phases in inversion symmetric insulators, and these phases are argued to be robust to the introduction of interactions.
We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.
Iron telluride (FeTe), a relative of the iron based high temperature superconductors, displays unusual magnetic order and structural transitions. Here we explore the idea that strong correlations may play an important role in these materials. We argu e that the unusual orders observed in FeTe can be understood from a picture of correlated local moments with orbital degeneracy, coupled to a small density of itinerant electrons. A component of the structural transition is attributed to orbital, rather than magnetic ordering, introducing a strongly anisotropic character to the system along the diagonal directions of the iron lattice. Double exchange interactions couple the diagonal chains leading to the observed ordering wavevector. The incommensurate order in samples with excess iron arises from electron doping in this scenario. The strong anisotropy of physical properties in the ordered phase should be detectable by transport in single domains. Predictions for ARPES, inelastic neutron scattering and hole/electron doping studies are also made.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا