ﻻ يوجد ملخص باللغة العربية
How do we uniquely identify a quantum phase, given its ground state wave-function? This is a key question for many body theory especially when we consider phases like topological insulators, that share the same symmetry but differ at the level of topology. The entanglement spectrum has been proposed as a ground state property that captures characteristic edge excitations. Here we study the entanglement spectrum for topological band insulators. We first show that insulators with topological surface states will necessarily also have protected modes in the entanglement spectrum. Surprisingly, however, the converse is not true. Protected entanglement modes can also appear for insulators without physical surface states, in which case they capture a more elusive property. This is illustrated by considering insulators with only inversion symmetry. Inversion is shown to act in an unusual way, as an antiunitary operator, on the entanglement spectrum, leading to this protection. The entanglement degeneracies indicate a variety of different phases in inversion symmetric insulators, and these phases are argued to be robust to the introduction of interactions.
We study the entanglement spectrum of noninteracting band insulators, which can be computed from the two-point correlation function, when restricted to one part of the system. In particular, we analyze a type of partitioning of the system that mainta
The theory of topological insulators and superconductors has mostly focused on non-interacting and gapped systems. This review article discusses topological phases that are either gapless or interacting. We discuss recent progress in identifying gapl
A gas of strongly interacting spinless p-orbital fermionic atoms in 2D optical lattices is proposed and studied. Several interesting new features are found. In the Mott limit on a square lattice, the gas is found to be described effectively by an orb
Topology is a central notion in the classification of band insulators and characterization of entangled many-body quantum states. In some cases, it manifests as quantized observables such as quantum Hall conductance. However, being inherently a globa
We uncover topological features of neutral particle-hole pair excitations of correlated quantum anomalous Hall (QAH) insulators whose approximately flat conduction and valence bands have equal and opposite non-zero Chern number. Using an exactly solv