ترغب بنشر مسار تعليمي؟ اضغط هنا

We focus on the exceptional flaring activity of 3C 454.3 in November 2010 and we discuss a theoretical framework addressing all data in their overall evolution. For two weeks the source has shown a plateau of enhanced GeV emission preceding a sudde n major flare lasting about 3 days before decaying. The gamma-ray flare onset is abrupt (about 6 hours), and is characterized by a prominent Compton dominance with the GeV flux exceeding the pre-flare values by a factor of 4-5, whereas the optical and X-ray fluxes increased only by a factor 2. We explore two alternatives. Case 1, with high-energy emission originating within the BLR; and Case 2, with most of it produced outside. We show that Case 1 has considerable problems in explaining the whole set of multifrequency data. Case 2, instead, leads to a consistent and interesting interpretation based on the enhanced inverse Compton radiation that is produced as the jet crashes onto a mirror cloud positioned at few parsec from the BH. This model explains the gamma-ray vs. optical/X-ray behavior of 3C 454.3, including the otherwise puzzling phenomena such as the prominent orphan optical flare, and the enhanced line emission with no appreciable gamma-ray counterpart that preceded the GeV flare. It also accounts for the delayed onset of the latter on top of the long plateau. Our modelling of the exceptional 3C 454.3 gamma-ray flare shows that, while emission inside the canonical BLR is problematic, major and rapid variations can be produced at parsec scales with moderate bulk Lorentz factors $Gammaapprox 15$.
The middle-aged supernova remnant (SNR) W44 has recently attracted attention because of its relevance regarding the origin of Galactic cosmic-rays. The gamma-ray missions AGILE and Fermi have established, for the first time for a SNR, the spectral co ntinuum below 200 MeV which can be attributed to neutral pion emission. Confirming the hadronic origin of the gamma-ray emission near 100 MeV is then of the greatest importance. Our paper is focused on a global re-assessment of all available data and models of particle acceleration in W44, with the goal of determining on a firm ground the hadronic and leptonic contributions to the overall spectrum. We also present new gamma-ray and CO NANTEN2 data on W44, and compare them with recently published AGILE and Fermi data. Our analysis strengthens previous studies and observations of the W44 complex environment and provides new information for a more detailed modeling. In particular, we determine that the average gas density of the regions emitting 100 MeV - 10 GeV gamma-rays is relatively high (n= 250 - 300 cm^-3). The hadronic interpretation of the gamma-ray spectrum of W44 is viable, and supported by strong evidence. It implies a relatively large value for the average magnetic field (B > 10^2 microG) in the SNR surroundings, sign of field amplification by shock-driven turbulence. Our new analysis establishes that the spectral index of the proton energy distribution function is p1 = 2.2 +/- 0.1 at low energies and p2 = 3.2 +/- 0.1 at high energies. We critically discuss hadronic versus leptonic-only models of emission taking into account simultaneously radio and gamma-ray data. We find that the leptonic models are disfavored by the combination of radio and gamma-ray data. Having determined the hadronic nature of the gamma-ray emission on firm ground, a number of theoretical challenges remains to be addressed.
We will present our study of the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between Sept. 2007 a nd Sept. 2012, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call waves. Statistically significant waves show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. The Sept. - Oct. 2007 gamma-ray enhancement episode detected by AGILE shows both wave and flaring behavior. We extend our analysis to the publicly available Fermi-LAT dataset and show that several additional wave episodes can be identified. We discuss the spectral properties of the September 2007 wave/flare event and show that the physical properties of the waves are intermediate between steady and flaring states. Plasma instabilities inducing waves appear to involve spatial distances $ l sim 10^{16} ,$cm and enhanced magnetic fields $B sim (0.5 - 1),$}mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the wave phenomenon ($E_w sim 10^{42} , rm erg$, where $E_w$ is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spindown energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.
The AGILE satellite detected several episodes of transient gamma-ray emission from Cygnus X-3. Cross-correlating the AGILE light curve with both X-ray and radio monitoring data, we found that the main events of gamma-ray activity were detected while the system was in soft spectral X-ray states, that coincide with local and often sharp minima of the hard X-ray flux, a few days before intense radio outbursts. This repetitive temporal coincidence between the gamma-ray transient emission and spectral state changes of the source turns out to be the spectral signature of high-energy activity from this microquasar. The gamma-ray differential spectrum of Cygnus X-3 (100 MeV - 3 GeV), which was obtained by averaging the data collected by AGILE during the gamma-ray events, is consistent with a power law of photon index {alpha} = 2.0 +/- 0.2. Finally, we examined leptonic and hadronic emission models for the gamma-ray activity and found that both scenarios are valid. In particular, in the leptonic model - based on inverse Compton scatterings of mildly relativistic electrons on soft photons from both the Wolf-Rayet companion star and the accretion disk - the emitting particles may also contribute to the overall hard X-ray spectrum, possibly explaining the hard non-thermal power-law tail seen during special soft X-ray states in Cygnus X-3.
Gamma-ray emission from the Crab Nebula has been recently shown to be unsteady. In this paper, we study the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main inten se and day-long flares detected by AGILE and Fermi-LAT between Sept. 2007 and Sept. 2012, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call waves. Statistically significant waves show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. We present a refined flux and spectral analysis of the Sept. - Oct. 2007 gamma-ray enhancement episode detected by AGILE that shows both wave and flaring behavior. We extend our analysis to the publicly available Fermi-LAT dataset and show that several additional wave episodes can be identified. We discuss the spectral properties of the September 2007 wave/flare event and show that the physical properties of the waves are intermediate between steady and flaring states. Plasma instabilities inducing waves appear to involve spatial distances l sim 10^{16} cm and enhanced magnetic fields B sim (0.5 - 1) mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the wave phenomenon (E_w sim 10^{42} erg, where E_w is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spindown energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.
We present the AGILE-GRID monitoring of Cygnus X-3, during the period between November 2007 and July 2009. We report here the whole AGILE-GRID monitoring of Cygnus X-3 in the AGILE pointing mode data-taking, to confirm that the gamma-ray activity coi ncides with the same repetitive pattern of multiwavelength emission and to analyze in depth the overall gamma-ray spectrum by assuming both leptonic and hadronic scenarios. Seven intense gamma-ray events were detected in this period, with a typical event lasting one or two days. These durations are longer than the likely cooling times of the gamma-ray emitting particles, implying we see continuous acceleration rather than the result of an impulsive event such as the ejection of a single plasmoid which then cools as it propagates outwards. Cross-correlating the AGILE-GRID light curve with X-ray and radio monitoring data, we find that the main events of gamma-ray activity have been detected while the system was in soft spectral X-ray states (RXTE/ASM count rate > 3 counts/s), that coincide with local and often sharp minima of the hard X-ray flux (Swift/BAT count rate < 0.02 counts/cm^2/s), a few days before intense radio outbursts. [...] These gamma-ray events may thus reflect a sharp transition in the structure of the accretion disk and its corona, which leads to a rebirth of the microquasar jet and subsequent enhanced radio activity. [...] Finally, we examine leptonic and hadronic emission models for the gamma-ray events and find that both scenarios are valid. In the leptonic model - based on inverse Compton scatterings of mildly relativistic electrons on soft photons from the Wolf-Rayet companion star and from the accretion disk - the emitting particles may also contribute to the overall hard X-ray spectrum, possibly explaining the hard non-thermal power-law tail sometimes seen during special soft X-ray states in Cygnus X-3.
196 - S. Sabatini , M. Tavani , E. Pian 2012
During its first 2 years of operation, the gamma-ray AGILE satellite accumulated an extensive dataset for the Galactic plane. The data have been monitored for transient sources and several gamma-ray sources were detected. Their variability and possib le association were studied. In this talk we will focus on the results of extensive observations of the Carina Region during the time period 2007 July - 2009 January, for a total livetime of ~130 days. The region is extremely complex, hosting massive star formation, with the remarkable colliding wind binary Eta Carinae, massive star clusters and HII regions (e.g. NGC 3324, RCW49, Westerlund II) and a giant molecular cloud extending over 150 pc (between l=284.7 and l=289). The Carina Nebula itself is the largest and IR highest surface brightness nebula of the Southern emisphere. We monitored several gamma ray sources in the Carina Region. In particular we detect a gamma ray source (1AGL J1043-5931) consistent with the position of Eta Carinae and report a remarkable 2-days gamma-ray flaring episode from this source on 2008 Oct 11-13. If 1AGL J1043-5931 is associated with the Eta Car system, our data provides the long sought first detection above 100 MeV of a colliding wind binary.
The AGILE space mission (whose instrument is sensitive in the energy ranges 18-60 keV, and 30 MeV - 50 GeV) has been operating since 2007. Assessing the statistical significance of time variability of gamma-ray sources above 100 MeV is a primary task of the AGILE data analysis. In particular, it is important to check the instrument sensitivity in terms of Poisson modeling of the data background, and to determine the post-trial confidence of detections. The goals of this work are: (i) evaluating the distributions of the likelihood ratio test for empty fields, and for regions of the Galactic plane; (ii) calculating the probability of false detection over multiple time intervals. In this paper we describe in detail the techniques used to search for short-term variability in the AGILE gamma-ray source database. We describe the binned maximum likelihood method used for the analysis of AGILE data, and the numerical simulations that support the characterization of the statistical analysis. We apply our method to both Galactic and extra-galactic transients, and provide a few examples. After having checked the reliability of the statistical description tested with the real AGILE data, we obtain the distribution of p-values for blind and specific source searches. We apply our results to the determination of the post-trial statistical significance of detections of transient gamma-ray sources in terms of pre-trial values. The results of our analysis allow a precise determination of the post-trial significance of {gamma}-ray sources detected by AGILE.
Cygnus X-3 (Cyg X-3) is a well-known microquasar producing variable emission at all wavelengths. Cyg X-3 is a prominent X-ray binary producing relativistic jets, and studying its high energy emission is crucial for the understanding of the fundamenta l acceleration processes in accreting compact objects. Aims. Our goal is to study extreme particle acceleration and {gamma}-ray production above 100 MeV during special spectral states of Cyg X- 3 usually characterized by a low hard X-ray flux and enhanced soft X-ray states. We observed Cyg X-3 with the AGILE satellite in extended time intervals from 2009 Jun.-Jul., and 2009 Nov.-2010 Jul. We report here the results of the AGILE {gamma}-ray monitoring of Cyg X-3 as well as the results from extensive multiwavelength campaigns involving radio (RATAN-600, AMI-LA and Mets{a}hovi Radio Observatories) and X-ray monitoring data (XTE and Swift). We detect a series of repeated {gamma}-ray flaring activity from Cyg X-3 that correlate with the soft X-ray states and episodes of decreasing or non-detectable hard X-ray emission. Furthermore, we detect {gamma}-ray enhanced emission that tends to be associated with radio flares greater than 1 Jy at 15 GHz, confirming a trend already detected in previous observations. The source remained active above 100 MeV for an extended period of time (almost 1.5 months in 2009 Jun.-Jul. and 1 month in 2010 May). We study in detail the short timescale {gamma}-ray flares that occurred before or near the radio peaks. Our results confirm the transient nature of the extreme particle acceleration from the microquasar Cyg X-3. A series of repeated {gamma}-ray flares shows correlations with radio and X-ray emission confirming a well established trend of emission. We compare our results with Fermi-LAT and MAGIC TeV observations of Cyg X-3.
We present the AGILE gamma-ray observations in the energy range 50 MeV - 10 GeV of the supernova remnant (SNR) W44, one of the most interesting systems for studying cosmic-ray production. W44 is an intermediate-age SNR (20, 000 years) and its ejecta expand in a dense medium as shown by a prominent radio shell, nearby molecular clouds, and bright [SII] emitting regions. We extend our gamma-ray analysis to energies substantially lower than previous measurements which could not conclusively establish the nature of the radiation. We find that gamma-ray emission matches remarkably well both the position and shape of the inner SNR shocked plasma. Furthermore, the gamma-ray spectrum shows a prominent peak near 1 GeV with a clear decrement at energies below a few hundreds of MeV as expected from neutral pion decay. Here we demonstrate that: (1) hadron-dominated models are consistent with all W44 multiwavelength constraints derived from radio, optical, X-ray, and gamma-ray observations; (2) ad hoc lepton-dominated models fail to explain simultaneously the well-constrained gamma-ray and radio spectra, and require a circumstellar density much larger than the value derived from observations; (3) the hadron energy spectrum is well described by a power-law (with index s = 3.0 pm 0.1) and a low-energy cut-off at Ec = 6 pm 1 GeV. Direct evidence for pion emission is then established in an SNR for the first time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا