ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutral pion emission from accelerated protons in the supernova remnant W44

243   0   0.0 ( 0 )
 نشر من قبل Andrea Giuliani
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the AGILE gamma-ray observations in the energy range 50 MeV - 10 GeV of the supernova remnant (SNR) W44, one of the most interesting systems for studying cosmic-ray production. W44 is an intermediate-age SNR (20, 000 years) and its ejecta expand in a dense medium as shown by a prominent radio shell, nearby molecular clouds, and bright [SII] emitting regions. We extend our gamma-ray analysis to energies substantially lower than previous measurements which could not conclusively establish the nature of the radiation. We find that gamma-ray emission matches remarkably well both the position and shape of the inner SNR shocked plasma. Furthermore, the gamma-ray spectrum shows a prominent peak near 1 GeV with a clear decrement at energies below a few hundreds of MeV as expected from neutral pion decay. Here we demonstrate that: (1) hadron-dominated models are consistent with all W44 multiwavelength constraints derived from radio, optical, X-ray, and gamma-ray observations; (2) ad hoc lepton-dominated models fail to explain simultaneously the well-constrained gamma-ray and radio spectra, and require a circumstellar density much larger than the value derived from observations; (3) the hadron energy spectrum is well described by a power-law (with index s = 3.0 pm 0.1) and a low-energy cut-off at Ec = 6 pm 1 GeV. Direct evidence for pion emission is then established in an SNR for the first time.



قيم البحث

اقرأ أيضاً

(Abridged) We have investigated two evolutionary scenarios advanced to explain the centrally-brightened X-ray morphology of the supernova remnant (SNR) W44: (1) a model involving the slow thermal evaporation of clouds engulfed by a supernova blast wa ve as it propagates though a clumpy interstellar medium (ISM), and (2) a hydrodynamical simulation of a blast wave propagating through a homogeneous ISM, including the effects of radiative cooling. Both models can have their respective parameters tuned to approximate the remnants morphology. The mean temperature of the hot plasma in W44 (~0.9 keV) as determined by our nonequilibrium ionization X-ray spectral analysis provides the essential key to discriminate between these scenarios. Based on the size (using the well established distance of 3 kpc) and temperature of W44, the dynamical evolution predicted by the cloud evaporation model gives an age for the SNR of merely 6500 yr. We argue that, because this age is inconsistent with the characteristic age (approx. 20000 yr) of the associated PSR 1853+01, this model cannot provide the explanation for the center-filled morphology. We favor the radiative-phase shock model since it can reproduce both the morphology and age of W44 assuming reasonable values for the initial explosion energy in the range 0.7E51 to 0.9E51 ergs and the ambient ISM density of between 3 and 4 cm**-3.
Recent observations of the supernova remnant W44 by the emph{Fermi} spacecraft observatory strongly support the idea that the bulk of galactic cosmic rays is accelerated in such remnants by a Fermi mechanism, also known as diffusive shock acceleratio n. However, the W44 expands into weakly ionized dense gas, and so a significant revision of the mechanism is required. In this paper we provide the necessary modifications and demonstrate that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by emph{exactly one power}. The spectral break is caused by Alfven wave evanescence leading to the fractional particle losses. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is also calculated and successfully fitted to the Fermi Observatory data. The parent proton spectrum is best represented by a classical test particle power law E^-2, steepening to E^-3 at E_br~7GeV due to deteriorated particle confinement.
The middle-aged supernova remnant (SNR) W44 has recently attracted attention because of its relevance regarding the origin of Galactic cosmic-rays. The gamma-ray missions AGILE and Fermi have established, for the first time for a SNR, the spectral co ntinuum below 200 MeV which can be attributed to neutral pion emission. Confirming the hadronic origin of the gamma-ray emission near 100 MeV is then of the greatest importance. Our paper is focused on a global re-assessment of all available data and models of particle acceleration in W44, with the goal of determining on a firm ground the hadronic and leptonic contributions to the overall spectrum. We also present new gamma-ray and CO NANTEN2 data on W44, and compare them with recently published AGILE and Fermi data. Our analysis strengthens previous studies and observations of the W44 complex environment and provides new information for a more detailed modeling. In particular, we determine that the average gas density of the regions emitting 100 MeV - 10 GeV gamma-rays is relatively high (n= 250 - 300 cm^-3). The hadronic interpretation of the gamma-ray spectrum of W44 is viable, and supported by strong evidence. It implies a relatively large value for the average magnetic field (B > 10^2 microG) in the SNR surroundings, sign of field amplification by shock-driven turbulence. Our new analysis establishes that the spectral index of the proton energy distribution function is p1 = 2.2 +/- 0.1 at low energies and p2 = 3.2 +/- 0.1 at high energies. We critically discuss hadronic versus leptonic-only models of emission taking into account simultaneously radio and gamma-ray data. We find that the leptonic models are disfavored by the combination of radio and gamma-ray data. Having determined the hadronic nature of the gamma-ray emission on firm ground, a number of theoretical challenges remains to be addressed.
We report new features of the typical mixed-morphology (MM) supernova remnant (SNR) W44. In the X-ray spectra obtained with Suzaku, radiative recombination continua (RRCs) of highly ionized atoms are detected for the first time. The spectra are well reproduced by a thermal plasma in a recombining phase. The best-fit parameters suggest that the electron temperature of the shock-heated matters cooled down rapidly from $sim1$,keV to $sim 0.5$,keV, possibly due to adiabatic expansion (rarefaction) occurred $sim20,000$ years ago. We also discover hard X-ray emission which shows an arc-like structure spatially-correlated with a radio continuum filament. The surface brightness distribution shows a clear anti-correlation with $^{12}$CO (J=2-1) emission from a molecular cloud observed with NANTEN2. While the hard X-ray is most likely due to a synchrotron enhancement in the vicinity of the cloud, no current model can quantitatively predict the observed flux.
Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resol ved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained from each of the regions with and without the molecular clouds. The results are well explained if the plasma was over-ionized by rapid cooling through thermal conduction with the dense clouds hit by the blast wave of W44. Given that a few other over-ionized SNRs show evidence for adiabatic expansion as the major driver of the rapid cooling, our new result indicates that both processes can contribute to over-ionization in SNRs, with the dominant channel depending on the evolutionary stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا