ترغب بنشر مسار تعليمي؟ اضغط هنا

The blob crashes into the mirror: modelling the exceptional gamma-ray flaring activity of 3C 454.3 in November 2010

484   0   0.0 ( 0 )
 نشر من قبل Valerio Vittorini
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We focus on the exceptional flaring activity of 3C 454.3 in November 2010 and we discuss a theoretical framework addressing all data in their overall evolution. For two weeks the source has shown a plateau of enhanced GeV emission preceding a sudden major flare lasting about 3 days before decaying. The gamma-ray flare onset is abrupt (about 6 hours), and is characterized by a prominent Compton dominance with the GeV flux exceeding the pre-flare values by a factor of 4-5, whereas the optical and X-ray fluxes increased only by a factor 2. We explore two alternatives. Case 1, with high-energy emission originating within the BLR; and Case 2, with most of it produced outside. We show that Case 1 has considerable problems in explaining the whole set of multifrequency data. Case 2, instead, leads to a consistent and interesting interpretation based on the enhanced inverse Compton radiation that is produced as the jet crashes onto a mirror cloud positioned at few parsec from the BH. This model explains the gamma-ray vs. optical/X-ray behavior of 3C 454.3, including the otherwise puzzling phenomena such as the prominent orphan optical flare, and the enhanced line emission with no appreciable gamma-ray counterpart that preceded the GeV flare. It also accounts for the delayed onset of the latter on top of the long plateau. Our modelling of the exceptional 3C 454.3 gamma-ray flare shows that, while emission inside the canonical BLR is problematic, major and rapid variations can be produced at parsec scales with moderate bulk Lorentz factors $Gammaapprox 15$.

قيم البحث

اقرأ أيضاً

Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s on a time scale of about 12 hours, more than a factor of 6 higher than the flux of the brightest steady gamma-ray source, the Vela pulsar, and more than a factor of 3 brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make a thorough study of the present event possible: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the gamma-ray flare, we find that the radio, optical and X-ray emission varies within a factor 2-3, whereas the gamma-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons.
78 - S. Vercellone 2012
3C 454.3 is the most variable and intense extragalactic gamma-ray blazar detected by AGILE and Fermi during the last 4 years. This remarkable source shows extreme flux variability (about a fact or of 20) on a time-scale of 24-48 hours, as well as rep eated flares on a time-scale of more than a year. The dynamic range, from the quiescence up to the most intense gamma-ray super-flare, is of about two orders of magnitude. We present the gamma-ray properties of 3C 454.3, comparing both the characteristics of flares at different levels and their multi-wavelength behavior. Moreover, an interpretation of both the long- and short-term properties of 3C 454.3 is reviewed, with particular emphasis on the two gamma-ray super-flares observed in 2009 and 2010, when 3C 454.3 became the brightest source of the whole gamma-ray sky.
Context. 3C 454.3 is a very active flat spectrum radio quasar (blazar) that has undergone a recent outburst in all observed bands, including the optical. Aims. In this work we explore the short-term optical variability of 3C 454.3 during its outbur st by searching for time delays between different optical bands. Finding one would be important for understanding the evolution of the spectrum of the relativistic electrons, which generate the synchrotron jet emission. Methods. We performed photometric monitoring of the object by repeating exposures in different optical bands (BVRI). Occasionally, different telescopes were used to monitor the object in the same band to verify the reliability of the smallest variations we observed. Results. Except on one occasion, where we found indications of a lag of the blue wavelengths behind the red ones, the results are inconclusive for most of the other cases. There were either no structures in the light curves to be able to search for patterns, or else different approaches led to different conclusions.
We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from November 2010 through January 2011. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and fa r-infrared bands, the Fermi Large Area Telescope at gamma-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this dataset, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation anlaysis of the millimeter, far-infrared, and gamma-ray light curves show that the variations were essentially simultaneous, indicative of co-spatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomegeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale core, whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70 percent during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.
We analyze total and polarized intensity images of the quasar 3C 454.3 obtained monthly with the VLBA at 43 GHz within the ongoing Boston U. monitoring program of gamma-ray blazars started in June 2007. The data are supplemented by VLBA observations performed during intense campaigns of 2 week duration when the quasar was observed 3 times per campaign. We find a strong increase of activity in the parsec-scale jet of the quasar during high gamma-ray states in December 2009, April 2010, and November 2010. We detect new superluminal knots, K09 and K10, associated with the autumn 2009 and 2010 outbursts, respectively, and compare their kinematic parameters. We analyze optical polarimetric behavior along with polarization parameters of the parsec-scale jet and outline similarities and differences in polarization properties across wavelengths. The results of the analysis support the conclusions that the optical polarized emission is produced in a region located in the vicinity of the mm-wave core of the jet of the quasar, and that the gamma-ray outbursts occur when a superluminal disturbance passes through the core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا