ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the strong hexagonal warping of the Dirac cone of Bi$_2$Te$_3$ by angle-resolved photoemission. Along $overline{Gamma}$$overline{rm M}$, the dispersion deviates from a linear behavior meaning that the Dirac cone is warped outwards and not inwards. We show that this introduces an anisotropy in the lifetime broadening of the topological surface state which is larger along $overline{Gamma}$$overline{rm K}$. The result is not consistent with nesting. Based on the theoretically predicted behavior of the ground-state spin texture of a strongly warped Dirac cone, we propose spin-dependent scattering processes as explanation for the anisotropic scattering rates. These results could help paving the way for optimizing future spintronic devices using topological insulators and controlling surface-scattering processes via external gate voltages.
The helical Dirac fermions at the surface of topological insulators show a strong circular dichroism which has been explained as being due to either the initial-state spin angular momentum, the initial-state orbital angular momentum, or the handednes s of the experimental setup. All of these interpretations conflict with our data from Bi2Te3 which depend on the photon energy and show several sign changes. Our one-step photoemission calculations coupled to ab initio theory confirm the sign change and assign the dichroism to a final-state effect. The spin polarization of the photoelectrons, instead, remains a reliable probe for the spin in the initial state.
Graphene in spintronics has so far primarily meant spin current leads of high performance because the intrinsic spin-orbit coupling of its pi-electrons is very weak. If a large spin-orbit coupling could be created by a proximity effect, the material could also form active elements of a spintronic device such as the Das-Datta spin field-effect transistor, however, metal interfaces often compromise the band dispersion of massless Dirac fermions. Our measurements show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (~100 meV) in the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals hybridization with Au-5d states as the source for the giant spin-orbit splitting. An ab initio model of the system shows a Rashba-split dispersion with the analytically predicted gapless band topology around the Dirac point of graphene and indicates that a sharp graphene-Au interface at equilibrium distance will account for only ~10 meV spin-orbit splitting. The ab initio calculations suggest an enhancement due to Au atoms that get closer to the graphene and do not violate the sublattice symmetry.
Topological insulators have been successfully identified by spin-resolved photoemission but the spin polarization remained low (~20%). We show for Bi2Te3 that the in-gap surface state is much closer to full spin polarization with measured values reac hing 80% at the Fermi level. When hybridizing with the bulk it remains highly spin polarized which may explain recent unusual quantum interference results on Bi2Se3. The topological surface state shows a large circular dichroism in the photoelectron angle distribution with an asymmetry of ~20% the sign of which corresponds to that of the measured spin.
105 - M. R. Scholz 2011
Topological insulators(1-8) are a novel form of matter which features metallic surface states with quasirelativistic dispersion similar to graphene(9). Unlike graphene, the locking of spin and momentum and the protection by time-reversal symmetry(1-8 ) open up tremendous additional possibilities for external control of transport properties(10-18). Here we show by angle-resolved photoelectron spectroscopy that the topological sur-face states of Bi2Te3 and Bi2Se3 are stable against the deposition of Fe without opening a band gap. This stability extends to low submonolayer coverages meaning that the band gap reported recently(19) for Fe on Bi2Se3 is incorrect as well as to complete monolayers meaning that topological surface states can very well exist at interfaces with ferromagnets in future devices.
Spin currents which allow for a dissipationless transport of information can be generated by electric fields in semiconductor heterostructures in the presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur for electronic surfa ce states of metals but these cannot exist but under ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect ({alpha}_R ~ 1.5E-10 eVm) on a surface state of Ir(111). We demonstrate that its spin splitting and spin polarization remain unaffected when Ir is covered with graphene. The graphene protection is, in turn, sufficient for the spin-split surface state to survive in ambient atmosphere. We discuss this result along with evidences for a topological protection of the surface state.
We have studied the electronic structure of the two-dimensional Heisenberg antiferromagnet VOCl using photoemission spectroscopy and density functional theory including local Coulomb repulsion. From calculated exchange integrals and the observed ener gy dispersions we argue that the degree of one-dimensionality regarding both the magnetic and electronic properties is noticeably reduced compared to the isostructural compounds TiOCl and TiOBr. Also, our analysis provides conclusive justification to classify VOCl as a multi-orbital Mott insulator. In contrast to the titanium based compounds density functional theory here gives a better description of the electronic structure. However, a quantitative account of the low-energy features and detailed line shapes calls for further investigations including dynamical and spatial correlations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا