ترغب بنشر مسار تعليمي؟ اضغط هنا

Tolerance of topological surface states towards magnetic moments: Fe on Bi2Te3 and Bi2Se3

106   0   0.0 ( 0 )
 نشر من قبل Markus Scholz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. R. Scholz




اسأل ChatGPT حول البحث

Topological insulators(1-8) are a novel form of matter which features metallic surface states with quasirelativistic dispersion similar to graphene(9). Unlike graphene, the locking of spin and momentum and the protection by time-reversal symmetry(1-8) open up tremendous additional possibilities for external control of transport properties(10-18). Here we show by angle-resolved photoelectron spectroscopy that the topological sur-face states of Bi2Te3 and Bi2Se3 are stable against the deposition of Fe without opening a band gap. This stability extends to low submonolayer coverages meaning that the band gap reported recently(19) for Fe on Bi2Se3 is incorrect as well as to complete monolayers meaning that topological surface states can very well exist at interfaces with ferromagnets in future devices.

قيم البحث

اقرأ أيضاً

Topological insulators have been successfully identified by spin-resolved photoemission but the spin polarization remained low (~20%). We show for Bi2Te3 that the in-gap surface state is much closer to full spin polarization with measured values reac hing 80% at the Fermi level. When hybridizing with the bulk it remains highly spin polarized which may explain recent unusual quantum interference results on Bi2Se3. The topological surface state shows a large circular dichroism in the photoelectron angle distribution with an asymmetry of ~20% the sign of which corresponds to that of the measured spin.
The two-dimensional (2D) surface state of the three-dimensional strong topological insulator (STI) is fundamentally distinct from other 2D electron systems in that the Fermi arc encircles an odd number of Dirac points. The TI surface is in the symple ctic universality class and uniquely among 2D systems remains metallic and cannot be localized by (time-reversal symmetric) disorder. However, in finite-size samples inter-surface coupling can destroy the topological protection. The question arises: At what size can a thin TI sample be treated as having decoupled topological surface states? We show that weak anti-localization(WAL) is extraordinarily sensitive to sub-meV coupling between top and bottom topological surfaces, and the surfaces of a TI film may be coherently coupled even for thicknesses as large as 12 nm. For thicker films we observe the signature of a true 2D topological metal: perfect weak anti-localization in quantitative agreement with two decoupled surfaces in the symplectic symmetry class.
Motivated by recent nuclear magnetic resonance (NMR) experiments, we present a microscopic sp3 tight-binding model calculation of the NMR shifts in bulk Bi2Se3, and Bi2Te3. We compute the contact, dipolar, orbital and core polarization contributions to the carrier-density-dependent part of the NMR shifts in Bi209, Te125 and Se77. The spin-orbit coupling and the layered crystal structure result in a contact Knight shift with strong uniaxial anisotropy. Likewise, because of spin-orbit coupling, dipolar interactions make a significant contribution to the isotropic part of the NMR shift. The contact interaction dominates the isotropic Knight shift in Bi209 NMR, even though the electronic states at the Fermi level have a rather weak s-orbital character. In contrast, the contribution from the contact hyperfine interaction to the NMR shift of Se77 and Te125 is weak compared to the dipolar and orbital shifts therein. In all cases, the orbital shift is at least comparable to the contact and dipolar shifts, while the shift due to core polarization is subdominant (except for Te nuclei located at the inversion centers). By artificially varying the strength of spin-orbit coupling, we evaluate the evolution of the NMR shift across a band inversion but find no clear signature of the topological transition.
The topological state that emerges at the surface of a topological insulator (TI) and at the TI-substrate interface are studied in metal-hBN-Bi2Se3 capacitors. By measuring the RF admittance of the capacitors versus gate voltage, we extract the compr essibility of the Dirac state located at a gated TI surface. We show that even in the presence of an ungated surface that hosts a trivial electron accumulation layer, the other gated surface always exhibits an ambipolar effect in the quantum capacitance. We succeed in determining the velocity of surface Dirac fermions in two devices, one with a passivated surface and the other with a free surface that hosts trivial states. Our results demonstrate the potential of RF quantum capacitance techniques to probe surface states of systems in the presence of a parasitic density-of-states.
101 - C.-Z. Xu , Y. Liu , R. Yukawa 2017
Circular dichroism (CD) observed by photoemission, being sensitive to the orbital and spin angular momenta of the electronic states, is a powerful probe of the nontrivial surface states of topological insulators, but the experimental results thus far have eluded a comprehensive description. We report a study of Bi2Te3 films with thicknesses ranging from one quintuple layer (two-dimensional limit) to twelve layers (bulk limit) over a wide range of incident photon energy. The data show complex variations in magnitude and sign reversals, which are nevertheless well described by a theoretical calculation including all three photoemission mechanisms: dipole transition, surface photoemission, and spin-orbit coupling. The results establish the nontrivial connection between the spin-orbit texture and CD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا