ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation of massive planetary or brown dwarf companions at large projected separations from their host star is not yet well understood. In order to put constraints on formation scenarios we search for signatures in the orbit dynamics of the syst ems. We are specifically interested in the eccentricities and inclinations since those parameters might tell us about the dynamic history of the systems and where to look for additional low-mass sub-stellar companions. For this purpose we utilized VLT/NACO to take several well calibrated high resolution images of 6 target systems and analyze them together with available literature data points of those systems as well as Hubble Space Telescope archival data. We used a statistical Least-Squares Monte-Carlo approach to constrain the orbit elements of all systems that showed significant differential motion of the primary star and companion. We show for the first time that the GQ Lup system shows significant change in both separation and position angle. Our analysis yields best fitting orbits for this system, which are eccentric (e between 0.21 and 0.69), but can not rule out circular orbits at high inclinations. Given our astrometry we discuss formation scenarios of the GQ Lup system. In addition, we detected an even fainter new companion candidate to GQ Lup, which is most likely a background object. We also updated the orbit constraints of the PZ Tel system, confirming that the companion is on a highly eccentric orbit with e > 0.62. Finally we show with a high significance, that there is no orbital motion observed in the cases of the DH Tau, HD 203030 and 1RXS J160929.1-210524 systems and give the most precise relative astrometric measurement of the UScoCTIO 108 system to date.
To understand the influence of additional wide stellar companions on planet formation, it is necessary to determine the fraction of multiple stellar systems amongst the known extrasolar planet population. We target recently discovered radial velocity exoplanetary systems observable from the northern hemisphere and with sufficiently high proper motion to detect stellar companions via direct imaging. We utilize the Calar Alto 2.2m telescope in combination with its lucky imaging camera AstraLux. 71 planet host stars have been observed so far, yielding one new low-mass (0.239 pm 0.022Modot) stellar companion, 4.5 arcsec (227AU of projected separation) northeast of the planet host star HD185269, detected via astrometry with AstraLux. We also present follow-up astrometry on three previously discovered stellar companions, showing for the first time common proper motion of the 0.5 arcsec companion to HD126614. Additionally, we determined the achieved detection limits for all targets, which allows us to characterize the detection space of possible further companions of these stars.
In this work we present detailed photometric results of the trapezium like galactic nearby OB clusters NGC 1502 and NGC 2169 carried out at the University Observatory Jena. We determined absolute $BVRI$ magnitudes of the mostly resolved components us ing Landolt standard stars. This multi colour photometry enables us to estimate spectral type and absorption as well as the masses of the components, which were not available for most of the cluster members in the literature so far, using models of stellar evolution. Furthermore, we investigated the optical spectrum of the components ADS 2984A and SZ Cam of the sextuple system in NGC 1502. Our spectra clearly confirm the multiplicity of these components, which is the first investigation of this kind at the University Observatory Jena.
437 - St. Raetz 2009
We report on observations of transit events of the transiting planets XO-1b and TrES-1 with a 25 cm telescope of the University Observatory Jena. With the transit timings for XO-1b from all 50 available XO, SuperWASP, Transit Light Curve (TLC)-Projec t- and Exoplanet Transit Database (ETD)-data, including our own I-band photometry obtained in March 2007, we find that the orbital period is P= (3.941501 +/- 0.000001) d, a slight change by ~3 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we present new R-band photometry of two transits of TrES-1. With the help of all available transit times from literature this allows us to refine the estimate of the orbital period: P=(3.0300722 +/- 0.0000002) d. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons.
450 - St. Raetz 2009
We report on observations of the eclipsing binary 2MASS 19090585+4911585 with the 25 cm auxiliary telescope of the University Observatory Jena. We show that a nearby brighter star (2MASS 19090783+4912085) was previously misclassified as the eclipsing binary and find 2MASS 19090585+4911585 to be the true source of variation. We present photometric analysis of VRI light curves. The system is an overcontact binary of W UMa type with an orbital period of (0.288374 +/- 0.000010) d.
83 - A. Koeltzsch 2009
We report on observation and determination of rotational periods of ten weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region. Observations were carried out with the Cassegrain-Teleskop-Kamera (CTK) at University Observatory Jena betw een 2007 June and 2008 May. The periods obtained range between 0.49 d and 5.7 d, typical for weak-line and post T Tauri stars.
82 - St. Raetz 2009
We report on observations of several transit events of the transiting planet TrES-2 obtained with the Cassegrain-Teleskop-Kamera at the University Observatory Jena. Between March 2007 and November 2008 ten different transits and almost a complete orb ital period were observed. Overall, in 40 nights of observation 4291 exposures (in total 71.52 h of observation) of the TrES-2 parent star were taken. With the transit timings for TrES-2 from the 34 events published by the TrES-network, the Transit Light Curve project and the Exoplanet Transit Database plus our own ten transits, we find that the orbital period is P=(2.470614 +/- 0.000001) d, a slight change by ~0.6 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we found a second dip after the transit which could either be due to a blended variable star or occultation of a second star or even an additional object in the system. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons.
We have performed deep, wide-field imaging on a ~0.4 deg^2 field in the Pleiades (Melotte 22). The selected field was not yet target of a deep search for low mass stars and brown dwarfs. Our limiting magnitudes are R ~ 22mag and I ~ 20mag, sufficient to detect brown dwarf candidates down to 40MJ. We found 197 objects, whose location in the (I, R - I) color magnitude diagram is consistent with the age and the distance of the Pleiades. Using CTK R and I as well as JHK photometry from our data and the 2MASS survey we were able to identify 7 new brown dwarf candidates. We present our data reduction technique, which enables us to resample, calibrate, and co-add many images by just two steps. We estimate the interstellar extinction and the spectral type from our optical and the NIR data using a two-dimensional chi^22 fitting.
127 - St. Raetz 2008
We have started high precision photometric monitoring observations at the AIU Jena observatory in Grossschwabhausen near Jena in fall 2006. We used a 25 cm Cassegrain telescope equipped with a CCD-camera mounted picky-pack on a 90 cm telescope. To te st the obtainable photometric precision, we observed stars with known transiting planets. We could recover all planetary transits observed by us. We observed the parent star of the transiting planet TrES-2 over a longer period in Grossschwabhausen. Between March and November 2007 seven different transits and almost a complete orbital period were analyzed. Overall, in 31 nights of observation 3423 exposures (in total 57.05 h of observation) of the TrES-2 parent star were taken. Here, we present our methods and the resulting light curves. Using our observations we could improve the orbital parameters of the system.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper-motion companions of stars via multi-epoch imaging. Their companions hip is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co-moving (13 sigma) stellar companion ~17.8 arcsec (350 AU in projected separation) north of the nearby star HD141272 (21 pc). With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3+-0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a 0.26+-0.07 Msol dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre-main sequence status, since the system is consistent with the ZAMS of the Pleiades.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا