ترغب بنشر مسار تعليمي؟ اضغط هنا

New brown dwarf candidates in the Pleiades

130   0   0.0 ( 0 )
 نشر من قبل Thomas Eisenbeiss
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed deep, wide-field imaging on a ~0.4 deg^2 field in the Pleiades (Melotte 22). The selected field was not yet target of a deep search for low mass stars and brown dwarfs. Our limiting magnitudes are R ~ 22mag and I ~ 20mag, sufficient to detect brown dwarf candidates down to 40MJ. We found 197 objects, whose location in the (I, R - I) color magnitude diagram is consistent with the age and the distance of the Pleiades. Using CTK R and I as well as JHK photometry from our data and the 2MASS survey we were able to identify 7 new brown dwarf candidates. We present our data reduction technique, which enables us to resample, calibrate, and co-add many images by just two steps. We estimate the interstellar extinction and the spectral type from our optical and the NIR data using a two-dimensional chi^22 fitting.



قيم البحث

اقرأ أيضاً

We present intermediate and low resolution optical spectroscopy (650-915 nm) of seven faint, very red objects (20 > I >= 17.8, I-Z >= 0.5) discovered in a CCD-based IZ survey covering an area of 1 sq. deg in the central region of the Pleiades open cl uster. The observed spectra show that these objects are very cool dwarfs, having spectral types in the range M6-M9. Five out of the seven objects can be considered as Pleiades members on the basis of their radial velocities, Halpha emission and other gravity sensitive atomic features like the NaI doublet at 818.3 and 819.5 nm. According to current evolutionary models the masses of these new objects range from roughly 80 MJup for the hottest in the sample down to 45 MJup for Roque 4, the coolest and faintest confirmed member. These observations prove that the cloud fragmentation process extends well into the brown dwarf realm, suggesting a rise in the initial mass function below the substellar limit.
We have identified a sample of cool field brown dwarf candidates using IRAC data from the Spitzer Deep, Wide-Field Survey (SDWFS). The candidates were selected from 400,000 SDWFS sources with [4.5] <= 18.5 mag and required to have [3.6]-[4.5] >= 1.5 and [4.5] - [8.0] <= 2.0 on the Vega system. The first color requirement selects objects redder than all but a handful of presently known brown dwarfs with spectral classes later than T7, while the second eliminates 14 probable reddened AGN. Optical detection of 4 of the remaining 18 sources implies they are likely also AGN, leaving 14 brown dwarf candidates. For two of the brightest candidates (SDWFS J143524.44+335334.6 and SDWFS J143222.82+323746.5), the spectral energy distributions including near-infrared detections suggest a spectral class of ~ T8. The proper motion is < 0.25 /yr, consistent with expectations for a luminosity inferred distance of >70 pc. The reddest brown dwarf candidate (SDWFS J143356.62+351849.2) has [3.6] - [4.5]=2.24 and H - [4.5] > 5.7, redder than any published brown dwarf in these colors, and may be the first example of the elusive Y-dwarf spectral class. Models from Burrows et al. (2003) predict larger numbers of cool brown dwarfs should be found for a Chabrier (2003) mass function. Suppressing the model [4.5] flux by a factor of two, as indicated by previous work, brings the Burrows models and observations into reasonable agreement. The recently launched Wide-field Infrared Survey Explorer (WISE) will probe a volume ~40x larger and should find hundreds of brown dwarfs cooler than T7.
135 - P. Dawson , A. Scholz , T. P. Ray 2012
We present a census of the disk population for UKIDSS selected brown dwarfs in the 5-10 Myr old Upper Scorpius OB association. For 116 objects originally identified in UKIDSS, the majority of them not studied in previous publications, we obtain photo metry from the WISE database. The resulting colour-magnitude and colour-colour plots clearly show two separate populations of objects, interpreted as brown dwarfs with disks (class II) and without disks (class III). We identify 27 class II brown dwarfs, 14 of them not previously known. This disk fraction (27 out of 116 or 23%) among brown dwarfs was found to be similar to results for K/M stars in Upper Scorpius, suggesting that the lifetimes of disks are independent of the mass of the central object for low-mass stars and brown dwarfs. 5 out of 27 disks (19%) lack excess at 3.4 and 4.6 microns and are potential transition disks (i.e. are in transition from class II to class III). The transition disk fraction is comparable to low-mass stars. We estimate that the timescale for a typical transition from class II to class III is less than 0.4 Myr for brown dwarfs. These results suggest that the evolution of brown dwarf disks mirrors the behaviour of disks around low-mass stars, with disk lifetimes on the order of 5-10 Myr and a disk clearing timescale significantly shorter than 1 Myr.
We have observed the eclipsing, post-common envelope white dwarf-brown dwarf binary, SDSS141126.20+200911.1, in the near-IR with the HAWK-I imager, and present here the first direct detection of the dark side of an irradiated brown dwarf in the $H$ b and, and a tentative detection in the $K_s$ band. Our analysis of the lightcurves and indicates that the brown dwarf is likely to have an effective temperature of 1300 K, which is not consistent with the effective temperature of 800 K suggested by its mass and radius. As the brown dwarf is already absorbing almost all the white dwarf emission in the $K_s$ band we suggest that this inconsistency may be due to the UV-irradiation from the white dwarf inducing an artificial brightening in the $K_s$ band, similar to that seen for the similar system WD0137-349B, suggesting this brightening may be characteristic of these UV-irradiated binaries.
A suite of discoveries in the last two decades demonstrate that we are now at a point where incorporating magnetic behavior is key for advancing our ability to characterize substellar and planetary systems. The next decade heralds the exciting matura tion of the now-burgeoning field of brown dwarf magnetism, and investing now in brown dwarf magnetism will provide a key platform for exploring exoplanetary magnetism and habitability beyond the solar system. We anticipate significant discoveries including: the nature of substellar and planetary magnetic dynamos, the characterization of exo-aurora physics and brown dwarf magnetospheric environments, and the role of satellites in manifestations of substellar magnetic activity. These efforts will require significant new observational capabilities at radio and near infrared wavelengths, dedicated long-term monitoring programs, and committed support for the theoretical modeling efforts underpinning the physical processes of the magnetic phenomena
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا