ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary transit observations at the University Observatory Jena: XO-1b and TrES-1

563   0   0.0 ( 0 )
 نشر من قبل Stefanie Raetz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف St. Raetz




اسأل ChatGPT حول البحث

We report on observations of transit events of the transiting planets XO-1b and TrES-1 with a 25 cm telescope of the University Observatory Jena. With the transit timings for XO-1b from all 50 available XO, SuperWASP, Transit Light Curve (TLC)-Project- and Exoplanet Transit Database (ETD)-data, including our own I-band photometry obtained in March 2007, we find that the orbital period is P= (3.941501 +/- 0.000001) d, a slight change by ~3 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we present new R-band photometry of two transits of TrES-1. With the help of all available transit times from literature this allows us to refine the estimate of the orbital period: P=(3.0300722 +/- 0.0000002) d. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons.



قيم البحث

اقرأ أيضاً

138 - St. Raetz 2009
We report on observations of several transit events of the transiting planet TrES-2 obtained with the Cassegrain-Teleskop-Kamera at the University Observatory Jena. Between March 2007 and November 2008 ten different transits and almost a complete orb ital period were observed. Overall, in 40 nights of observation 4291 exposures (in total 71.52 h of observation) of the TrES-2 parent star were taken. With the transit timings for TrES-2 from the 34 events published by the TrES-network, the Transit Light Curve project and the Exoplanet Transit Database plus our own ten transits, we find that the orbital period is P=(2.470614 +/- 0.000001) d, a slight change by ~0.6 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we found a second dip after the transit which could either be due to a blended variable star or occultation of a second star or even an additional object in the system. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons.
212 - M. Rabus , H. J. Deeg , R. Alonso 2009
The aim of this work is a detailed analysis of transit light curves from TrES-1 and TrES-2, obtained over a period of three to four years, in order to search for variabilities in observed mid-transit times and to set limits for the presence of additi onal third bodies. Using the IAC 80cm telescope, we observed transits of TrES-1 and TrES-2 over several years. Based on these new data and previously published work, we studied the observed light curves and searched for variations in the difference between observed and calculated (based on a fixed ephemeris) transit times. To model possible transit timing variations, we used polynomials of different orders, simulated O-C diagrams corresponding to a perturbing third mass and sinusoidal fits. For each model we calculated the chi-squared residuals and the False Alarm Probability (FAP). For TrES-1 we can exclude planetary companions (>1 M_earth) in the 3:2 and 2:1 MMRs having high FAPs based on our transit observations from ground. Additionally, the presence of a light time effect caused by e. g. a 0.09 M_sun mass star at a distance of 7.8 AU is possible. As for TrES-2, we found a better ephemeris of Tc = 2,453,957.63512(28) + 2.4706101(18) x Epoch and a good fit for a sine function with a period of 0.2 days, compatible with a moon around TrES-2 and an amplitude of 57 s, but it was not a uniquely low chi-squared value that would indicate a clear signal. In both cases, TrES-1 and TrES-2, we were able to put upper limits on the presence of additional perturbers masses. We also conclude that any sinusoidal variations that might be indicative of exomoons need to be confirmed with higher statistical significance by further observations, noting that TrES-2 is in the field-of-view of the Kepler Space Telescope.
We report the results of the transit timing variation (TTV) analysis of the extra-solar planet Qatar-1b using thirty eight light curves. Our analysis combines thirty five previously available transit light curves with three new transits observed by u s between June 2016 and September 2016 using the 2-m Himalayan Chandra Telescope (HCT) at the Indian Astronomical Observatory (Hanle, India). From these transit data, the physical and orbital parameters of the Qatar-1 system are determined. In addition to this, the ephemeris for the orbital period and mid-transit time are refined to investigate the possible TTV. We find that the null-TTV model provides the better fit to the (O-C) data. This indicates that there is no evidence for TTVs to confirm the presence of additional planets in the Qatar-1 system. The use of the 3.6-m Devasthal Optical Telescope (DOT) operated by the Aryabhatta Research Institute of Observational Sciences (ARIES, Nainital, India) could improve the photometric precision to examine the signature of TTVs in this system with a greater accuracy than in the present work.
292 - C. Caceres 2009
Currently the only technique sensitive to Earth mass planets around nearby stars (that are too close for microlensing) is the monitoring of the transit time variations of the transiting extrasolar planets. We search for additional planets in the syst ems of the hot Neptune GJ 436b, and the hot-Jupiter XO-1b, using high cadence observations in the J and Ks bands. New high-precision transit timing measurements are reported: GJ 436b Tc = 2454238.47898 pm 0.00046 HJD; XO-1b Tc(A) = 2454218.83331 pm 0.00114 HJD, Tc(B) = 2454222.77539 pm 0.00036 HJD, Tc(C) = 2454222.77597 pm 0.00039 HJD, Tc(D) = 2454226.71769 pm 0.00034 HJD, and they were used to derive new ephemeris. We also determined depths for these transits. No statistically significant timing deviations were detected. We demonstrate that the high cadence ground based near-infrared observations are successful in constraining the mean transit time to ~30 sec., and are a viable alternative to space missions.
We report on observations of 11 transit events of the transiting extrasolar planet XO-1b by the SuperWASP-North observatory. From our data, obtained during May-September 2004, we find that the XO-1b orbital period is 3.941634 +/- 0.000137 days, the p lanetary radius is 1.34 +/- 0.12 Rjup and the inclination is 88.92 +/- 1.04 degrees, in good agreement with previously published values. We tabulate the transit timings from 2004 SuperWASP and XO data, which are the earliest obtained for XO-1b, and which will therefore be useful for future investigations of timing variations caused by additional perturbing planets. We also present an ephemeris for the transits. See http://www.superwasp.org for general project details.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا