ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we present the solution of the stellar spot problem using the Kelvin-Stokes theorem. Our result is applicable for any given location and dimension of the spots on the stellar surface. We present explicitely the result up to the second de gree in the limb darkening law. This technique can be used to calculate very efficiently mutual photometric effects produced by eclipsing bodies occulting stellar spots and to construct complex spot shapes.
128 - M. Montalto 2012
In this work we investigate the problem concerning the presence of additional bodies gravitationally bounded with the WASP-3 system. We present eight new transits of this planet and analyse all the photometric and radial velocity data published so fa r. We did not observe significant periodicities in the Fourier spectrum of the observed minus calculated (O-C) transit timing and radial velocity diagrams (the highest peak having false-alarm probabilities of 56 per cent and 31 per cent, respectively) or long-term trends. Combining all the available information, we conclude that the radial velocity and transit timing techniques exclude, at 99 per cent confidence limit, any perturber more massive than M gtrsim 100 M_Earth with periods up to 10 times the period of the inner planet. We also investigate the possible presence of an exomoon on this system and determined that considering the scatter of the O-C transit timing residuals a coplanar exomoon would likely produce detectable transits. This hypothesis is however apparently ruled out by observations conducted by other researchers. In case the orbit of the moon is not coplanar the accuracy of our transit timing and transit duration measurements prevents any significant statement. Interestingly, on the basis of our reanalysis of SOPHIE data we noted that WASP-3 passed from a less active (log R_hk=-4.95) to a more active (log R_hk=-4.8) state during the 3 yr monitoring period spanned by the observations. Despite no clear spot crossing has been reported for this system, this analysis claims for a more intensive monitoring of the activity level of this star in order to understand its impact on photometric and radial velocity measurements.
Context: Several studies have so far placed useful constraints on planetary atmospheric properties using transmission spectrsocopy, and in the case of HD209458b even the radial velocity of the planet during the transit event has been reconstructed op ening a new range of possibilities. AIMS. In this contribution we highlight the importance to account for the orbital eccentricity and longitude of periastron of the planetary orbit to accurately interpret the measured planetary radial velocity during the transit. Methods: We calculate the radial velocity of a transiting planet in an eccentric orbit. Given the larger orbital speed of planets with respect to their stellar companions even small eccentricities can result in detectable blue or redshift radial velocity offsets during the transit with respect to the systemic velocity, the exact value depending also on the longitude of the periastron of the planetary orbit. For an hot-jupiter planet, an eccentricity of only e=0.01 can produce a radial velocity offset of the order of the km/s. Conclusions: We propose an alternative interpretation of the recently claimed radial velocity blueshift (~2 km/s) of the planetary spectral lines of HD209458b which implies that the orbit of this system is not exactly circular. In this case, the longitude of the periastron of the stellar orbit is most likely confined in the first quadrant (and that one of the planet in the third quadrant). We highlight that transmission spectroscopy allows not only to study the compositional properties of planetary atmospheres, but also to refine their orbital parameters and that any conclusion regarding the presence of windflows on planetary surfaces coming from transmission spectroscopy measurements requires precise known orbital parameters from RV.
71 - M. Montalto 2010
[ABRIDGED] Since the discovery of the first transiting extrasolar planet, transit timing has been recognized as a powerful method to discover and characterize additional planets in these systems. However, the gravitational influence of additional pla nets is not the only expected source of transit timing variations. In this work, we derive the expected detection frequency of stellar companions of hot-jupiter transiting planets host-stars, detectable by means of transit timing analysis. Since roughly half of the stars in the solar neighborhood belong to binary or multiple stellar systems, the same fraction of binary systems may be expected to be present among transiting planet-host stars, unless planet formation is significantly influenced by the presence of a stellar companion. Transit searches are less affected by the selection biases against long-period binaries that plague radial velocity surveys. If the frequency of binaries among hot-jupiter planets host stars is the same as determined in the solar neighborhood, after 5 years since the discovery of a sample of transiting planets 1.0%+/-0.2% of them have a probability >99% to present transit timing variations >50 sec induced by stellar binarity, and 2.8%+/-0.3% after 10 years, if the planetary and binary orbits are coplanar. Considering the case of random inclinations the probabilities are 0.6%+/-0.1% and 1.7%+/-0.2% after 5 and 10 years respectively. Our estimates can be considered conservative lower limits, since we have taken into account only binaries with periods P>5x10^3 days (a>=6 AU). Our simulations indicate that transit timing variations due to the light travel time effect allow discovery of stellar companions up to maximum separations equal to asim36 AU after 5 years since the discovery of the planet (asim75 AU after 10 years).
We measured the radial velocity of 139 stars in the region of NGC 6253, discussing clusters membership and binarity in this sample, complementing our analysis with photometric, proper motion, and radial velocity data available from previous studies o f this cluster, and analyzing three planetary transiting candidates we found in the field of NGC 6253. Spectra were obtained with the UVES and GIRAFFE spectrographs at the VLT, during three epochs in August 2008. The mean radial velocity of the cluster is -29.11+/-0.85 km/s. Using both radial velocities and proper motions we found 35 clusters members, among which 12 are likely clusters close binary systems. One star may have a sub-stellar companion, requiring a more intensive follow-up. Our results are in good agreement with past radial velocity and photometric measurements. Furthermore, using our photometry, astrometry and spectroscopy we identified a new sub-giant branch eclipsing binary system, member of the cluster. The clusters close binary frequency at 29% +/- 9% (34% +/-10% once including long period binaries), appears higher than the field binary frequency equal to (22% +/- 5%, though these estimates are still consistent within the uncertainties. Among the three transiting planetary candidates the brightest one (V=15.26) is worth to be more intensively investigated with higher percision spectroscopy. We discussed the possibility to detect sub-stellar companions (brown dwarfs and planets) with the radial velocity technique (both with UVES/GIRAFFE and HARPS) around turn-off stars of old open clusters [abridged].
Context. We present a photometric and astrometric catalog of 187963 stars located in the field around the old super-metal-rich Galactic open cluster NGC 6253. The total field-of-view covered by the catalog is 34 x 33. In this field, we provide CCD BV RI photometry. For a smaller region close to the clusters center, we also provide near-infrared JHK photometry. Aims. We analyze the properties of NGC 6253 by using our new photometric data and astrometric membership. Methods. In June 2004, we targeted the cluster during a 10 day multi-site campaign, which involved the MPG/ESO 2.2m telescope with its wide-field imager and the Anglo-Australian 3.9m telescope, equipped with the IRIS2 near-infrared imager. Archival CCD images of NGC 6253 were used to derive relative proper motions and to calculate the cluster membership probabilities. Results. We have refined the clusters fundamental parameters, deriving (V_0-M_v)=11.15, E(B - V)=0.15, E(V - I)=0.25, E(V - J)=0.50, and E(V - H)=0.55. The color excess ratios obtained using both the optical and near infrared colors indicate a normal reddening law in the direction of NGC 6253. The age of NGC 6253 at 3.5 Gyr, determined from our best-fitting isochrone appears to be slightly older than the previous estimates. Finally, we estimated the binary fraction among the cluster members to be sim20%-30% and identified 11 blue straggler candidates.
Aims: This work presents a high--precision variability survey in the field of the old, super metal-rich open cluster NGC 6791. Methods: The data sample consists of more than 75,000 high-precision CCD time series measurements in the V band obtained mainly at the Canada-France-Hawaii Telescope, with additional data from S. Pedro Martir and Loiano observatories, over a time span of ten nights. The field covers an area of 42x28 arcmin^2. Results: We have discovered 260 new variables and re-determined periods and amplitudes of 70 known variable stars. By means of a photometric evaluation of the membership in NGC 6791, and a preliminary membership based on the proper motions, we give a full description of the variable content of the cluster and surrounding field in the range 16<V<23.5. Accurate periods can be given for the variables with P<4.0 d, while for ones with longer periods the limited time-baseline hampered precise determinations. We categorized the entire sample as follows: 6 pulsating, 3 irregular, 3 cataclysmic, 89 rotational variables and 61 eclipsing systems; moreover, we detected 168 candidate variables for which we cannot give a variability class since their periods are much longer than our time baseline. Conclusions: On the basis of photometric considerations, and of the positions of the stars with respect to the center of the cluster, we inferred that 11 new variable stars are likely members of the cluster, for 22 stars the membership is doubtful and 137 are likely non-members. We also detected an outburst of about 3 mag in the light curve of a very faint blue star belonging to the cluster and we suggest that this star could be a new U Gem (dwarf nova) cataclysmic variable.
142 - M. Montalto 2007
Context. Searching for planets in open clusters allows us to study the effects of dynamical environment on planet formation and evolution. Aims. Considering the strong dependence of planet frequency on stellar metallicity, we studied the metal rich old open cluster NGC 6791 and searched for close-in planets using the transit technique. Methods. A ten-night observational campaign was performed using the Canada-France-Hawaii Telescope (3.6m), the San Pedro Martir telescope (2.1m), and the Loiano telescope (1.5m). To increase the transit detection probability we also made use of the Bruntt et al. (2003) eight-nights observational campaign. Adequate photometric precision for the detection of planetary transits was achieved. Results. Should the frequency and properties of close-in planets in NGC 6791 be similar to those orbiting field stars of similar metallicity, then detailed simulations foresee the presence of 2-3 transiting planets. Instead, we do not confirm the transit candidates proposed by Bruntt et al. (2003). The probability that the null detection is simply due to chance coincidence is estimated to be 3%-10%, depending on the metallicity assumed for the cluster. Conclusions. Possible explanations of the null-detection of transits include: (i) a lower frequency of close-in planets in star clusters; (ii) a smaller planetary radius for planets orbiting super metal rich stars; or (iii) limitations in the basic assumptions. More extensive photometry with 3-4m class telescopes is required to allow conclusive inferences about the frequency of planets in NGC 6791.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا