ترغب بنشر مسار تعليمي؟ اضغط هنا

BVRIJHK photometry and proper motion analysis of NGC 6253 and the surrounding field

49   0   0.0 ( 0 )
 نشر من قبل Marco Montalto
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. We present a photometric and astrometric catalog of 187963 stars located in the field around the old super-metal-rich Galactic open cluster NGC 6253. The total field-of-view covered by the catalog is 34 x 33. In this field, we provide CCD BVRI photometry. For a smaller region close to the clusters center, we also provide near-infrared JHK photometry. Aims. We analyze the properties of NGC 6253 by using our new photometric data and astrometric membership. Methods. In June 2004, we targeted the cluster during a 10 day multi-site campaign, which involved the MPG/ESO 2.2m telescope with its wide-field imager and the Anglo-Australian 3.9m telescope, equipped with the IRIS2 near-infrared imager. Archival CCD images of NGC 6253 were used to derive relative proper motions and to calculate the cluster membership probabilities. Results. We have refined the clusters fundamental parameters, deriving (V_0-M_v)=11.15, E(B - V)=0.15, E(V - I)=0.25, E(V - J)=0.50, and E(V - H)=0.55. The color excess ratios obtained using both the optical and near infrared colors indicate a normal reddening law in the direction of NGC 6253. The age of NGC 6253 at 3.5 Gyr, determined from our best-fitting isochrone appears to be slightly older than the previous estimates. Finally, we estimated the binary fraction among the cluster members to be sim20%-30% and identified 11 blue straggler candidates.

قيم البحث

اقرأ أيضاً

This work presents the first high-precision variability survey in the field of the intermediate-age, metal--rich open cluster NGC 6253. Clusters of this type are benchmarks for stellar evolution models. Continuous photometric monitoring of the cluste r and its surrounding field was performed over a time span of ten nights using the Wide Field Imager mounted at the ESO-MPI 2.2m telescope. High-quality timeseries, each composed of about 800 datapoints, were obtained for 250,000 stars using ISIS and DAOPHOT packages. Candidate members were selected by using the colour-magnitude diagrams and period-luminosity-colour relations. Membership probabilities based on the proper motions were also used. The membership of all the variables discovered within a radius of 8 arcmin from the centre is discussed by comparing the incidence of the classes in the cluster direction and in the surrounding field. We discovered 595 variables and we also characterized most of them providing their variability classes, periods, and amplitudes. The sample is complete for short periods: we classified 20 pulsating variables, 225 contact systems, 99 eclipsing systems (22 Beta Lyr type, 59 Beta Per type, 18 RS CVn type), and 77 rotational variables. The time-baseline hampered the precise characterization of 173 variables with periods longer than 4-5 days. Moreover, we found a cataclysmic system undergoing an outburst of about 2.5 mag. We propose a list of 35 variable stars (8 contact systems, 2 eclipsing systems, 15 rotational variables, 9 long-period variables and the cataclysmic variable) as probable members of NGC 6253.
120 - E. Chiosi 2012
In this paper we present a study and comparison of the star formation rates (SFR) in the fields around NGC 1898 and NGC 2154, two intermediate-age star clusters located in very different regions of the Large Magellanic Cloud. We also present a photom etric study of NGC 1898, and of seven minor clusters which happen to fall in the field of NGC 1898, for which basic parameters were so far unknown. We do not focus on NGC 2154, because this cluster was already investigated in Baume et al. 2007, using the same theoretical tools. The ages of the clusters were derived by means of the isochrone fitting method on their $clean$ color-magnitude diagrams. Two distinct populations of clusters were found: one cluster (NGC 2154) has a mean age of 1.7 Gyr, with indication of extended star formation over roughly a 1 Gyr period, while all the others have ages between 100 and 200 Myr. The SFRs of the adjacent fields were inferred using the downhill-simplex algorithm. Both SFRs show enhancements at 200, 400, 800 Myr, and at 1, 6, and 8 Gyr. These bursts in the SFR are probably the result of dynamical interactions between the Magellanic Clouds (MCs), and of the MCs with the Milky Way.
We present Stroemgren-NIR photometry of NGC6528 and its surroundings in the Baades Window. uvby images were collected with EFOSC2@NTT, while NIR catalogs are based on VIRCAM@VISTA and SOFI@NTT data. The matching with HST photometry allowed us to obta in proper-motion-cleaned samples of cluster and bulge stars. The huge color sensitivity of Stroemgren-NIR CMDs helped us in disentangling age and metallicity effects. The RGB of NGC6528 is reproduced by scaled-solar isochrones with solar abundance or alpha-enhanced isochrones with the same iron content, and an age of t = 11+/-1 Gyr. These findings support literature age estimates for NGC6528. We also performed a theoretical metallicity calibration based on the Stroemgren index m1 and on visual-NIR colors for RGs, by adopting scaled-solar and alpha-enhanced models. We applied the calibration to estimate the metallicity of NGC6528, finding [Fe/H] = -0.04+/-0.02, with an intrinsic dispersion of 0.27 dex (by averaging abundances based on the scaled-solar [m], y - J and [m], y - K Metallicity-Index-Color relations), and of -0.11+/-0.01 (sig = 0.27 dex), by using the m1, y - J and m1, y - K relations. These findings support the results of Zoccali et al. (2004) which give [Fe/H] = -0.10+/-0.2, and a low alpha-enhancement, [alpha/Fe] = 0.1, and of Carretta et al. (2001), that find [Fe/H] = 0.07+/-0.01, with [alpha/Fe] = 0.2. By applying the scaled-solar MIC relations to Baades window RGs, we find a metallicity distribution extending from [Fe/H] ~ -1.0 to ~ 1 dex, with peaks at [Fe/H] ~ -0.2 and +0.55 ([m], y - J and [m], y - K relations), and [Fe/H] ~ -0.25 and +0.4 (m1, y - J and m1, y - K relations). These findings are in good agreement with the spectroscopic studies of Hill et al. (2011) for the Baades window, of Uttenthaler et al. (2012) for a region centered at (l,b) = (0, -10), and with the results of the ARGOS survey (Ness et al. 2013a).
We measured the radial velocity of 139 stars in the region of NGC 6253, discussing clusters membership and binarity in this sample, complementing our analysis with photometric, proper motion, and radial velocity data available from previous studies o f this cluster, and analyzing three planetary transiting candidates we found in the field of NGC 6253. Spectra were obtained with the UVES and GIRAFFE spectrographs at the VLT, during three epochs in August 2008. The mean radial velocity of the cluster is -29.11+/-0.85 km/s. Using both radial velocities and proper motions we found 35 clusters members, among which 12 are likely clusters close binary systems. One star may have a sub-stellar companion, requiring a more intensive follow-up. Our results are in good agreement with past radial velocity and photometric measurements. Furthermore, using our photometry, astrometry and spectroscopy we identified a new sub-giant branch eclipsing binary system, member of the cluster. The clusters close binary frequency at 29% +/- 9% (34% +/-10% once including long period binaries), appears higher than the field binary frequency equal to (22% +/- 5%, though these estimates are still consistent within the uncertainties. Among the three transiting planetary candidates the brightest one (V=15.26) is worth to be more intensively investigated with higher percision spectroscopy. We discussed the possibility to detect sub-stellar companions (brown dwarfs and planets) with the radial velocity technique (both with UVES/GIRAFFE and HARPS) around turn-off stars of old open clusters [abridged].
Aims: We present the first measurement of the proper motion and orbit of the very distant and intriguing globular cluster NCG 2419. Methods: We have combined data from HST and Gaia DR1 to derive the relative proper motions of stars in the direction t o the cluster. To tie to an absolute reference frame we have used a background galaxy located in the field. Results: We find the absolute proper motion of NGC 2419 to be $(mu_{alpha}cos(delta)$, $mu_{delta}$)=($-0.17pm0.26,-0.49pm0.17$) mas/yr. We have integrated the orbit of the cluster in a Galactic potential and found it to oscillate between $sim$53 kpc and $sim$98 kpc on a nearly polar orbit. This makes it very likely that NGC 2419 is a former cluster of the Sagittarius dwarf spheroidal galaxy, also because it shares the same sense of rotation around the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا