ترغب بنشر مسار تعليمي؟ اضغط هنا

Exoplanets transmission spectroscopy: accounting for eccentricity and longitude of periastron. Superwinds in the upper atmosphere of HD209458b?

118   0   0.0 ( 0 )
 نشر من قبل Marco Montalto
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: Several studies have so far placed useful constraints on planetary atmospheric properties using transmission spectrsocopy, and in the case of HD209458b even the radial velocity of the planet during the transit event has been reconstructed opening a new range of possibilities. AIMS. In this contribution we highlight the importance to account for the orbital eccentricity and longitude of periastron of the planetary orbit to accurately interpret the measured planetary radial velocity during the transit. Methods: We calculate the radial velocity of a transiting planet in an eccentric orbit. Given the larger orbital speed of planets with respect to their stellar companions even small eccentricities can result in detectable blue or redshift radial velocity offsets during the transit with respect to the systemic velocity, the exact value depending also on the longitude of the periastron of the planetary orbit. For an hot-jupiter planet, an eccentricity of only e=0.01 can produce a radial velocity offset of the order of the km/s. Conclusions: We propose an alternative interpretation of the recently claimed radial velocity blueshift (~2 km/s) of the planetary spectral lines of HD209458b which implies that the orbit of this system is not exactly circular. In this case, the longitude of the periastron of the stellar orbit is most likely confined in the first quadrant (and that one of the planet in the third quadrant). We highlight that transmission spectroscopy allows not only to study the compositional properties of planetary atmospheres, but also to refine their orbital parameters and that any conclusion regarding the presence of windflows on planetary surfaces coming from transmission spectroscopy measurements requires precise known orbital parameters from RV.



قيم البحث

اقرأ أيضاً

Exoplanetary transmission spectroscopy in the near-infrared using Hubble/NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with Hubble/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6-percent (XO-1) and 26-percent (HD209458b) of the photon-limit at a spectral resolving power of 70, and are better than 0.01-percent per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 microns. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. (2002). Model atmospheres having uniformly-distributed extra opacity of 0.012 cm^2 per gram account approximately for both our water measurement and the sodium absorption in this planet. Our results for HD209458b support the picture advocated by Pont et al. (2013) in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD209458b is grayer than for HD189733b, with a weaker Rayleigh component.
The detection and characterization of exoplanet atmospheres is currently one of the main drivers pushing the development of new observing facilities. In this context, high-resolution spectrographs are {proving} their potential and showing that high-r esolution spectroscopy will be paramount in this field. We aim to make use of ESPRESSO high-resolution spectra, which cover two transits of HD209458b, to probe the broadband transmission optical spectrum of the planet. We applied the chromatic Rossiter-McLaughin method to derive the transmission spectrum of HD209458b. We compared the results with previous HST observations and with synthetic spectra. We recover a transmission spectrum of HD209458b similar to the one obtained with HST data. The models suggest that the observed signal can be explained by only Na, only TiO, or both Na and TiO, even though none is fully capable of explaining our observed transmission spectrum. Extra absorbers may be needed to explain the full dataset, though modeling approximations and observational errors can also be responsible for the observed mismatch. Using the chromatic Rossiter-McLaughlin technique, ESPRESSO is able to provide broadband transmission spectra of exoplanets from the ground, in conjunction with space-based facilities, opening good perspectives for similar studies of other planets.
A complete reassessment of the HST observations of the transits of the extrasolar planet HD209458b has provided a transmission spectrum of the atmosphere over a wide range of wavelengths. Analysis of the NaI absorption line profile has already shown that the sodium abundance has to drop by at least a factor of ten above a critical altitude. Here we analyze the profile in the deep core of the NaI doublet line from HST and high-resolution ground-based spectra to further constrain the vertical structure of the HD209458b atmosphere. With a wavelength-dependent cross section that spans more than 5 orders of magnitude, we use the absorption signature of the NaI doublet as an atmospheric probe. The NaI transmission features are shown to sample the atmosphere of HD209458b over an altitude range of more than 6500km, corresponding to a pressure range of 14 scale heights spanning 1 millibar to 1e-9 bar pressures. By comparing the observations with a multi-layer model in which temperature is a free parameter at the resolution of the atmospheric scale height, we constrain the temperature vertical profile and variations in the Na abundance in the upper part of the atmosphere of HD209458b. We find a rise in temperature above the drop in sodium abundance at the 3mbar level. We also identify an isothermal atmospheric layer at 1500+/-100K spanning almost 6 scale heights in altitude, from 1e-5 to 1e-7 bar. Above this layer, the temperature rises again to 2500(+1500/-1000)K at 1e-9 bar, indicating the presence of a thermosphere. The resulting temperature-pressure (T-P) profile agrees with the Na condensation scenario at the 3 mbar level, with a possible signature of sodium ionization at higher altitudes, near the 3e-5 bar level. Our T-P profile is found to be in good agreement with the profiles obtained with aeronomical models including hydrodynamic escape.
High-resolution transmission spectroscopy is a method for understanding the chemical and physical properties of upper exoplanetary atmospheres. Due to large absorption cross-sections, resonance lines of atomic sodium D-lines (at 5889.95 $AA$ and 5895 .92 $AA$) produce large transmission signals. Our aim is to unveil the physical properties of WASP-17b through an accurate measurement of the sodium absorption in the transmission spectrum. We analyze 37 high-resolution spectra observed during a single transit of WASP-17b with the MIKE instrument on the 6.5 meter Magellan Telescopes. We exclude stellar flaring activity during the observations by analyzing the temporal variations of H$_{alpha}$ and Ca II infra-red triplet (IRT) lines. Then we obtain the excess absorption light curves in wavelength bands of 0.75, 1, 1.5 and 3 $AA$ around the center of each sodium line (i.e., the light curve approach). We model the effects of differential limb-darkening, and the changing planetary radial velocity on the light curves. We also analyze the sodium absorption directly in the transmission spectrum, which is obtained through dividing in-transit by out-of-transit spectra (i.e., the division approach). We then compare our measurements with a radiative transfer atmospheric model. Our analysis results in a tentative detection of exoplanetary sodium: we measure the width and amplitude of the exoplanetary sodium feature to be $sigma_{mathrm{Na}}$ = (0.128 $pm$ 0.078) $AA$ and A$_{mathrm{Na}}$ = (1.7 $pm$ 0.9)% in the excess light curve approach and $sigma_{mathrm{Na}}$ = (0.850 $pm$ 0.034) $AA$ and A$_{mathrm{Na}}$ = (1.3 $pm$ 0.6)% in the division approach. By comparing our measurements with a simple atmospheric model, we retrieve an atmospheric temperature of 1550 $^{+170} _{-200}$ K and radius (at 0.1 bar) of 1.81 $pm$ 0.02 R$_{rm Jup}$ for WASP-17b.
Transit observations in the MgI line of HD209458b revealed signatures of neutral magnesium escaping the upper atmosphere of the planet, while no atmospheric absorption was found in the MgII doublet. Here we present a 3D particle model of the dynamics of neutral and ionized magnesium populations, coupled with an analytical modeling of the atmosphere below the exobase. Theoretical MgI absorption line profiles are directly compared with the absorption observed in the blue wing of the line during the planet transit. Observations are well-fitted with an escape rate of neutral magnesium in the range 2x10^7-3.4x10^7 g/s, an exobase close to the Roche lobe (Rexo in the range 2.1-4.3 Rp, where Rp is the planet radius) and a planetary wind velocity at the exobase vpl=25km/s. The observed velocities of the planet-escaping magnesium up to -60km/s are well explained by radiation pressure acceleration, provided that UV-photoionization is compensated for by electron recombination up to about 13Rp. If the exobase properties are constrained to values given by theoretical models of the deeper atmosphere (Rexo=2Rp and vpl=10km/s), the best fit to the observations is found at a similar electron density and escape rate within 2 sigma. In all cases, the mean temperature of the atmosphere below the exobase must be higher than about 6100 K. Simulations predict a redward expansion of the absorption profile from the beginning to the end of the transit. The spatial and spectral structure of the extended atmosphere is the result of complex interactions between radiation pressure, planetary gravity, and self-shielding, and can be probed through the analysis of transit absorption profiles in the MgI line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا