ترغب بنشر مسار تعليمي؟ اضغط هنا

We use the complete MOJAVE 1.5 Jy sample of active galactic nuclei (AGN) to examine the gamma-ray detection statistics of the brightest radio-loud blazars in the northern sky. We find that 23% of these AGN were not detected above 0.1 GeV by the Fermi LAT during the 4-year 3FGL catalog period partly because of an instrumental selection effect, and partly due to their lower Doppler boosting factors. Blazars with synchrotron peaks in their spectral energy distributions located below $10^{13.4}$ Hz also tend to have high-energy peaks that lie below the 0.1 GeV threshold of the LAT, and are thus less likely to be detected by Fermi. The non-detected AGN in the 1.5 Jy sample also have significantly lower 15 GHz radio modulation indices and apparent jet speeds, indicating that they have lower than average Doppler factors. Since the effective amount of relativistic Doppler boosting is enhanced in gamma-rays (particularly in the case of external inverse-Compton scattering), this makes them less likely to appear in the 3FGL catalog. Based on their observed properties, we have identified several bright radio-selected blazars that are strong candidates for future detection by Fermi.
We present multiwavelength imaging observations of PKS 1045-188, 8C 1849+670, and PKS 2216-038, three radio-loud active galactic nuclei from the MOJAVE-Chandra Sample that straddle the Fanaroff-Riley (FR) boundary between low- and high-power jets. Th ese hybrid sources provide an excellent opportunity to study jet emission mechanisms and the influence of the external environment. We used archival VLA observations, and new Hubble and Chandra observations to identify and study the spectral properties of five knots in PKS 1045-188, two knots in 8C 1849+670, and three knots in PKS 2216-038. For the seven X-ray visible knots, we constructed and fit the broadband spectra using synchrotron and inverse Compton/cosmic microwave background (IC/CMB) emission models. In all cases, we found that the lack of detected optical emission ruled out the X-ray emission from the same electron population that produces radio emission. All three sources have high total extended radio power, similar to that of FR II sources. We find this is in good agreement with previously studied hybrid sources, where high-power hybrid sources emit X-rays via IC/CMB and the low-power hybrid sources emit X-rays via synchrotron emission. This supports the idea that it is total radio power rather than FR morphology that determines the X-ray emission mechanism. We found no significant asymmetries in the diffuse X-ray emission surrounding the host galaxies. Sources PKS 1045-188 and 8C 1849+670 show significant differences in their radio and X-ray termination points, which may result from the deceleration of highly relativistic bulk motion.
80 - J. L. Richards 2014
Several narrow-line Seyfert 1 galaxies (NLS1s) have now been detected in gamma rays, providing firm evidence that at least some of this class of active galactic nuclei (AGN) produce relativistic jets. The presence of jets in NLS1s is surprising, as t hese sources are typified by comparatively small black hole masses and near- or super-Eddington accretion rates. This challenges the current understanding of the conditions necessary for jet production. Comparing the properties of the jets in NLS1s with those in more familiar jetted systems is thus essential to improve jet production models. We present early results from our campaign to monitor the kinematics and polarization of the parsec-scale jets in a sample of 15 NLS1s through multifrequency observations with the Very Long Baseline Array. These observations are complemented by fast-cadence 15 GHz monitoring with the Owens Valley Radio Observatory 40m telescope and optical spectroscopic monitoring with with the 2m class telescope at the Guillermo Haro Astrophysics Observatory in Cananea, Mexico.
We report on the acceleration properties of 329 features in 95 blazar jets from the MOJAVE VLBA program. Nearly half the features and three-quarters of the jets show significant changes in speed and/or direction. In general, apparent speed changes ar e distinctly larger than changes in direction, indicating that changes in the Lorentz factors of jet features dominate the observed speed changes rather than bends along the line of sight. Observed accelerations tend to increase the speed of features near the jet base, $lesssim 10-20$ parsecs projected, and decrease their speed at longer distances. The range of apparent speeds at fixed distance in an individual jet can span a factor of a few, indicating that shock properties and geometry may influence the apparent motions; however, we suggest that the broad trend of jet features increasing their speed near the origin is due to an overall acceleration of the jet flow out to de-projected distances of order $10^2$ parsecs, beyond which the flow begins to decelerate or remains nearly constant in speed. We estimate intrinsic rates of change of the Lorentz factors in the galaxy frame of order $dot{Gamma}/Gamma simeq 10^{-3}$ to $10^{-2}$ per year which can lead to total Lorentz factor changes of a factor of a few on the length scales observed here. Finally, we also find evidence for jet collimation at projected distances of $lesssim 10$ parsecs in the form of the non-radial motion and bending accelerations that tend to better align features with the inner jet.
69 - M. L. Lister 2013
We describe the parsec-scale kinematics of 200 AGN jets based on 15 GHz VLBA data obtained between 1994 Aug 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGN from the MOJAVE and 2 cm Survey programs. Nearly all of th e 60 most heavily observed jets show significant changes in their innermost position angle over a 12 to 16 year interval, ranging from 10 deg to 150 deg on the sky, corresponding to intrinsic variations of ~0.5 deg to ~2 deg. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5 to 12 y), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section, and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1 mas per y), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. (abridged)
111 - M. L. Lister , M. Aller , H. Aller 2011
We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 deg. during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.
79 - T. Hovatta 2010
We have compared the parsec-scale jet linear polarization properties of the Fermi LAT-detected and non-detected sources in the complete flux-density-limited (MOJAVE-1) sample of highly beamed AGN. Of the 123 MOJAVE sources, 30 were detected by the LA T during its first three months of operation. We find that during the era since the launch of Fermi, the unresolved core components of the LAT-detected jets have significantly higher median fractional polarization at 15 GHz. This complements our previous findings that these LAT sources have higher apparent jet speeds, brightness temperatures and Doppler factors, and are preferentially found in higher activity states.
49 - P. Kharb , M. L. Lister , 2010
We present the results of a study on the 1.4 GHz kpc-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud AGNs. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. Many BL Lacs exhibit extended radio power and kpc-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lacs to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and pc-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent pc-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 Angstrom is essentially an arbitrary one. Based on the assumption that the extended radio luminosity is affected by the kpc-scale environment, we define the ratio of extended radio power to absolute optical magnitude as a proxy for environmental effects. Trends with this parameter suggest that the pc-scale jet speeds and the pc-to-kpc jet misalignments are not affected by the large-scale environment, but are more likely to depend upon factors intrinsic to the AGN, or its local pc-scale environment. We suggest that some of the extremely misaligned MOJAVE blazar jets could be hybrid morphology sources, with an FRI jet on one side and an FRII jet on the other. (Abridged)
78 - M. L. Lister 2009
We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGN) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2 cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets. The data quality and temporal coverage (a median of 15 epochs per source) of this complete AGN jet sample represents a significant advance over previous kinematics surveys. In all but five AGNs, the jets appear one-sided, most likely the result of differential Doppler boosting. In general the observed motions are directed along the jet ridge line, outward from the optically thick core feature. We directly observe changes in speed and/or direction in one third of the well-sampled jet components in our survey. While there is some spread in the apparent speeds of separate features within an individual jet, the dispersion is about three times smaller than the overall dispersion of speeds among all jets. This supports the idea that there is a characteristic flow that describes each jet, which we have characterized by the fastest observed component speed. The observed maximum speed distribution is peaked at ~10c, with a tail that extends out to ~50c. This requires a distribution of intrinsic Lorentz factors in the parent population that range up to ~50. We also note the presence of some rare low-pattern speeds or even stationary features in otherwise rapidly flowing jets... (abridged)
In its first three months of operations, the Fermi Gamma-Ray Observatory has detected approximately one quarter of the radio-flux-limited MOJAVE sample of bright flat-spectrum active galactic nuclei (AGNs) at energies above 100 MeV. We have investiga ted the apparent parsec-scale jet speeds of 26 MOJAVE AGNs measured by the Very Long Baseline Array (VLBA) that are in the LAT bright AGN sample (LBAS). We find that the gamma-ray bright quasars have faster jets on average than the non-LBAS quasars, with a median of 15 c, and values ranging up to 34 c. The LBAS AGNs in which the LAT has detected significant gamma-ray flux variability generally have faster jets than the nonvariable ones. These findings are in overall agreement with earlier results based on nonuniform EGRET data which suggested that gamma-ray bright AGNs have preferentially higher Doppler boosting factors than other blazar jets. However, the relatively low LAT detection rates for the full MOJAVE sample (24%) and previously known MOJAVE EGRET-detected blazars (43%) imply that Doppler boosting is not the sole factor that determines whether a particular AGN is bright at gamma-ray energies. The slower apparent jet speeds of LBAS BL Lac objects and their higher overall LAT detection rate as compared to quasars suggest that the former are being detected by Fermi because of their higher intrinsic (unbeamed) gamma-ray to radio luminosity ratios.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا