ترغب بنشر مسار تعليمي؟ اضغط هنا

MOJAVE. X. Parsec-Scale Jet Orientation Variations and Superluminal Motion in AGN

72   0   0.0 ( 0 )
 نشر من قبل Yuri Kovalev Jr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. L. Lister




اسأل ChatGPT حول البحث

We describe the parsec-scale kinematics of 200 AGN jets based on 15 GHz VLBA data obtained between 1994 Aug 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGN from the MOJAVE and 2 cm Survey programs. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12 to 16 year interval, ranging from 10 deg to 150 deg on the sky, corresponding to intrinsic variations of ~0.5 deg to ~2 deg. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5 to 12 y), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section, and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1 mas per y), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. (abridged)

قيم البحث

اقرأ أيضاً

113 - M. L. Lister , M. Aller , H. Aller 2011
We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 deg. during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.
The Hubble constant ($H_0$) measures the current expansion rate of the Universe, and plays a fundamental role in cosmology. Tremendous effort has been dedicated over the past decades to measure $H_0$. Notably, Planck cosmic microwave background (CMB) and the local Cepheid-supernovae distance ladder measurements determine $H_0$ with a precision of $sim 1%$ and $sim 2%$ respectively. A $3$-$sigma$ level of discrepancy exists between the two measurements, for reasons that have yet to be understood. Gravitational wave (GW) sources accompanied by electromagnetic (EM) counterparts offer a completely independent standard siren (the GW analogue of an astronomical standard candle) measurement of $H_0$, as demonstrated following the discovery of the neutron star merger, GW170817. This measurement does not assume a cosmological model and is independent of a cosmic distance ladder. The first joint analysis of the GW signal from GW170817 and its EM localization led to a measurement of $H_0=74^{+16}_{-8}$ km/s/Mpc (median and symmetric $68%$ credible interval). In this analysis, the degeneracy in the GW signal between the source distance and the weakly constrained viewing angle dominated the $H_0$ measurement uncertainty. Recently, Mooley et al. (2018) obtained tight constraints on the viewing angle using high angular resolution imaging of the radio counterpart of GW170817. Here we obtain a significantly improved measurement $H_0=68.9^{+4.7}_{-4.6}$ km/s/Mpc by using these new radio observations, combined with the previous GW and EM data. We estimate that 15 more localized GW170817-like events (comparable signal-to-noise ratio, favorable orientation), having radio images and light curve data, will potentially bring resolution to the tension between the Planck and Cepheid-supernova measurements, as compared to 50-100 GW events without such data.
65 - R.-S. Lu (SHAO , MPIfR , 2012
PKS 1749+096 is a BL Lac object showing weak extended jet emission to the northeast of the compact VLBI core on parsec scales. We aim at better understanding the jet kinematics and variability of this source and finding clues that may applicable to o ther BL Lac objects. The jet was studied with multi-epoch multi-frequency high-resolution VLBI observations. The jet is characterized by a one-sided curved morphology at all epochs and all frequencies. The VLBI core, located at the southern end of the jet, was identified based on its spectral properties. The equipartition magnetic field of the core was investigated, through which we derived a Doppler factor of 5, largely consistent with that derived from kinematics (component C5). The study of the detailed jet kinematics at 22 and 15 GHz, spanning a period of more than 10 years, indicates the possible existence of a bimodal distribution of the jet apparent speed. Ballistic and non-ballistic components are found to coexist in the jet. Superluminal motions in the range of 5-21 c were measured in 11 distinct components. We estimated the physical jet parameters with the minimum Lorentz factor of 10.2 and Doppler factors in the range of 10.2-20.4 (component C5). The coincidence in time of the components ejection and flares supports the idea that, at least in PKS 1749+096, ejection of new jet components is connected with major outbursts in flux density. For the best-traced component (C5) we found that the flux density decays rapidly as it travels downstream the jet, accompanied by a steepening of its spectra, which argues in favor of a contribution of inverse Compton cooling. These properties make PKS 1749+096 a suitable target for an intensive monitoring to decipher the variability phenomenon of BL Lac objects.
81 - Junhyun Baek 2019
We have performed a very long baseline interferometry (VLBI) survey of local (z < 0.05) ultra hard X-ray (14-195 keV) selected active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) using KVN, KaVA, and VLBA. We first executed fringe surveys of 142 BAT-detected AGN at 15 or 22 GHz. Based on the fringe surveys and archival data, we find 10/279 nearby AGN (~4%) VLBI have 22 GHz flux above 30 mJy. This implies that the X-ray AGN with a bright nuclear jet are not common. Among these 10 radio-bright AGN, we obtained 22 GHz VLBI imaging data of our own for four targets and reprocessed archival data for six targets. We find that, although our 10 AGN observed with VLBI span a wide range of pc-scale morphological types, they lie on a tight linear relation between accretion luminosity and nuclear jet luminosity. Our result suggests that a powerful nuclear radio jet correlates with the accretion disc luminosity. We also probed the fundamental plane of black hole activity at VLBI scales (e.g., few milli-arcsecond). The jet luminosity and size distribution among our sample roughly fit into the proposed AGN evolutionary scenario, finding powerful jets after the blow-out phase based on the Eddington ratio (lambda_{Edd})-hydrogen column density (N_{H}) relation. In addition, we find some hints of gas inflow or galaxy-galaxy merger in the majority of our sample. This implies that gas supply via tidal interactions in galactic scale may help the central AGN to launch a powerful parsec-scale jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا